DRUMMOND AREA SCHOOL DISTRICT SCHOOL ENERGY AND DEMAND REDUCTION OPPORTUNITY ASSESSMENT JULY 25, 2019

Mr. Robert Drevlow

FACILTIY: Drummond Area K-12 School

LOCATION: Drummond WI.

This material is based upon work supported by the by the Public Service Commission of Wisconsin, Office of Energy Innovation and the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under the State Energy Program Award Number DE-EE0000163." Agreement Number EIGP-18-10

Disclaimers

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

PURPOSE

Identify power and energy reductions that can reduce the school's utility bill and provide the basis for qualifying for a state sponsored" Energy Innovation Grant" that combines incentives for implementation of renewable energy sources with reductions in existing electricity use through improved equipment and operation.

PROCESS

A team representing the grant program consisting of Bill Bailey, Niels Wolter and myself met with Chris Vaillancourt, school facilities manager, toured the facility and discussed facility operations and observed existing spaces, equipment and significant energy using equipment and applications.

Bill Bailey provided general background of the solar component and background for the grant application, Niels Wolter explored and discussed potential mounting and interface opportunities for the solar application. I observed and commented on various energy application and energy reduction opportunities. Chris Vaillancourt provided information about the current facility conditions and current equipment and controls.

I reviewed the information acquired from the on-site assessment, made a preliminary assessment of items of interest and followed this with an additional meeting with Chris Vaillancourt to assess his and the perceived school district interests and limitations and to secure additional information needed to create useful decision-making models.

I prepared Xcel worksheet models to evaluate the energy and demand reduction potential, make recommendation for implementation and rudimentary simple payback period estimates.

Chris Vaillancourt provided a multiyear utility bill summary showing monthly and annual energy use, demand components and expenses. He also provided a total lamp count for several major areas in the school, as well as other valuable information relative to equipment and operating practices.

APPLICATIONS REVIEWED

Opportunities for power and energy reductions in the following areas were explored.

- 1. Lighting
- 2. Heating system circulation pumps
- 3. Air handlers
- 4. Univents

It is noted that only electric energy reduction opportunities were reviewed but that significant fuel reduction opportunities also exist.

It is also noted that air conditioning equipment electricity reduction opportunities have not been evaluated at this time.

GENERAL INFORMATION

The facility is a K-12 school building constructed over many years with the most recent construction occurring in 1986, 1992 and 2000.

The facility's total area is approximately 100,000 square feet, is totally utilized and include 2 gyms, a large commons/cafeteria. Classrooms, mechanical skills workshop area, food service area and equipment rooms, administration offices and board room areas and various storage and mechanical equipment areas.

The facility is light and airy in most areas. The facility does not appear overcrowded, and appears well maintained.

The annual electric energy expense for the facility was \$47,343 for a 12-month period in 2018-2019 and the maximum peak monthly billing demand was 175kw. The annual energy consumption was 442,000 kwh. for the same period. The minimum monthly demand was 86 kW occurring in the summer, non-school session, period. The effective annual rate for all electric energy used is \$0.107 per kWh. The facility is served by Xcel Energy on a time of use rate structure.

The boiler and circulation pump systems are high performance and were very recently replaced.

The lighting system is T-8 lamp based throughout. The existing lamps and ballasts are reported to have been installed in 2010 but the troffers appear to date to the building's original construction dates.

Control systems are limited. Direct Digital Control (DDC), i.e., Metasys control, is provided for the 2000 construction only and currently does not provide visual access to control graphics or control due to a software issue. This limitation is expected to be resolved by June 30, 2019. The older parts of the facility are served by pneumatic controlled air handlers and independently controlled univents.

Food service exhaust fans exist but are reported to be used minimally.

Computer and information technology exist but was not reviewed.

Exterior lighting was not reviewed.

SUMMARY OF ASESSMENTS

1. Lighting

Lighting is the facility's largest installed energy use application and therefore presents a significant energy and demand reduction opportunity if appropriate cost-effective measures can be identified and implemented.

Light energy reduction can be achieved in several ways.

- Light level reductions, including: delamping, low watt lamp and ballast replacement, and control
- Light hour use reductions
- More efficient lighting equipment, including lamp replacement and fixture replacement
- Combinations of the above

Light Level Reductions

It was noted in touring the facility that lighting levels (lumen values) varied significantly across the facility. Lighting levels appeared to vary for apparently similar applications at different locations in the school. This suggests that some of the areas are "over lit" and a reduction in light levels could be implemented to reduce energy, demand and expenses.

It was also observed that several instructors had taken steps to reduce the lighting levels in their classrooms by applying films over the lighting troffers to reduce the light levels to what they considered a more appropriate level.

It was also noted that various gym lighting levels were available through switching but hardly ever used by the staff. This suggests that light level reductions are desired and being achieved but the school is not gaining any corresponding reduction in energy use or cost.

It is also noted that current instructional processes utilize personal computer screens and smartboards more and pages and paper less. Higher lighting levels result in higher glare levels for personal screen use and less contrast for smart boards and other front screen applications. Light level reductions may result in light levels more compatible for current instructional methods.

The T-8 troffers used throughout the classrooms, halls and large space areas are all lensed troffers. The current troffers observed appear to be troffers from the original construction dates but have been upgraded to T-8 lamps and electronic ballasts reported to be 2010.

Lighting control is limited to manual wall switching. Two switches exist in many classrooms and can switch 2 independent circuits but it does not appear that these are being applied in

any consistent way to reduce energy and demand. it is also not known how the circuits allocate the light in the classrooms.

Light level reductions should be based on an evaluation of current and proposed light level requirements for the activity and or instruction occurring in the lighting zone. The overall aesthetic impact of the light levels and the desires of the primary occupants of the space also need to be considered. The probability of the space light level requirements changing over time due to activity, instructional or personnel changes also needs to be considered.

The primary tool in this process is a "light meter", which measures the lumen /lux values at any point the light meter is held. This measures the input of all light sources. Thus, the impact of a reduction of a single light source may only result in a fractional reduction of the light total light level.

Light level recommendations are available from many sources including Focus on Energy, lighting providers, engineers etc. The final decision however needs to be made by the school administration based on their needs and desired final out comes.

There are several means of reducing light levels:

Delamping

Delamping is a low cost but effective means of reducing light output from a troffer or fixture to reduce power and energy requirements. Light power reduction by removing a lamp from a fixture will be generally proportional but somewhat less than the number of lamps removed to the total lamps in the troffer. E.g., removing 1 lamp from a 4-lamp troffer may result in a 20 % power and lighting reduction.

Removing a lamp from a fixture reduces the heat generated in the troffer and marginally increases lamp life of the remaining lamps thereby reducing the cooling load for the space and allowing the heating load to be supplied by a lower cost heat source.

Delamping results in a change in the appearance of the troffer lens itself. The light intensity will be reduced in the area the lamps were removed.

Lamp and troffers experience light depreciation with age i.e. light levels gradually decay. Lamp replacement of the remaining lamps and thorough cleaning of the troffer and lens will offset much of the light output reduction caused by the lamp removal.

Low Watt Lamp and Ballast Replacements

Reductions in power input and light output of a troffer can also be achieved by replacing the current lamps and or ballasts with available lower power and output replacements. 25-watt 4 ft florescent tubes are available to replacement existing 32- or 40-watt tubes. Low ballast factor ballasts are also available which cause a power and light reduction from the lamps served.

Although these opportunities exist for any area where light level reductions are considered appropriate, this measure has in general been superseded by conversion to L.E.D. lamps and or fixtures.

Controls

The time-honored method for light reduction has been and remains "turning some of the light sources off". The historic manual methods of achieving this, however, have proven ineffective in many applications due to a lack of motivation, understanding or discipline of the appropriate "switch person".

Dimming is an effective light and power reduction technique but not easily implemented or cost effectively applied to T-8 florescent lamps (the current lighting system in this facility). Dimming is however readily accomplished with many of the current L.E.D. (light emitting diode) lamps and troffers. Dimming can be implemented based on instructional needs, schedules, or total light levels in the space (e.g., responding to varying levels of window-sourced daylight).

Partial lamp shutdown techniques are available but relatively expensive to implement and require multiple circuits and switching or controls, which, as previously indicated, do not currently exist for the entire facility.

In general dimming is preferable to partial lamp switching as a light level reduction technique.

Light Hour Reductions

Light energy and expense are directly related to the operating time of the lamps. Occupancy controls can turn off lights in areas where no occupant need for light exists. Photo sensor controls allow entry ways, foyers and other areas experiencing significant daylight introduction through windows or skylights to turn off the interior lights at desired total light levels. Electronic time clocks or DDC system control can provide effective precise lighting applications and curtail light use when not required.

More Efficient Lighting Equipment

Recent technological improvements and manufacturing efficiencies have made L.E.D. lighting products cost effective upgrade opportunities for T-8 troffers. L.E.D. products have been used for many years for specialty applications including exit lighting, traffic lighting and signage.

More recently, however, the range of cost-effective applications for L.E.D. lighting products has expanded to include the general lighting applications for common school facility

applications. The efficiency of the L.E.D. technology can be applied in several ways and provide some alternatives for reducing light power and energy.

Lamp Replacement

The current 4 ft T-8 lamps provide light output initially at approx. 90 lumens per watt. Over time this deteriorates by 20% to 30%. 4 ft. L.E.D. tubes are currently available that provide up to 2200 lumens at approximately 125 lumens per watt.

The light output of the L.E.D. tubes depreciates very little over the life of the tube and the tube life expectancy is much longer than a florescent lamp. This means that the light level remains more constant over the life of the lamp and less excess has to be applied initially to assure appropriate light levels at the end of lamp life. Thus, a lower initial light level can be applied which reduces power and energy for the entire lamp life.

The maximum light output from the 4 ft. L.E.D. tubes however is less than the initial output of approximately 2900 lumens from a new T-8 lamp and represents a significant reduction depending on the existing and proposed equipment and needs to be considered in the application.

Where the reduced light level is acceptable, this measure results in significant energy and power reductions and typically can be installed by in house staff.

The reduced power input to the L.E.D lamp also reduces the heat generated in the troffer which results in reduced cooling load for the space and reduced heating energy cost.

The L.E.D. lamps are available as dimmable units if controls are applied. The L.E.D. tubes are available in "bypass units" which allow removal of the existing ballast if desired or direct connect" which retain the existing ballast.

Fixture Replacement

It has been noted that the majority of the facility lighting is lensed troffers. Lensed troffers of the era of the existing lighting had efficiencies of approx. 70% this means that approximately 30 % of the light generated by the lamps doesn't make it out of the troffer. This light loss also increases with time due to dirt accumulation and deterioration of the lens material.

Current troffer design without lenses achieve higher efficiencies by design. Use of lamps in the existing troffers means that light is equally radiated from all portions of the circular tube and a reflector is required to redirect the light radiated from the upper portions of the tube down into the lighting zone. This results in light loss and eventual light level depreciation. The L.E.D. tubes are directional and don't require reflectors to place the light output into the desired area. This allows a more efficient application than T-8 lamp type application. Reflectors are still provided however in many efficient fixtures to provide indirect lighting to reduce glare.

Fixture selection needs to consider the application. The L.E.D. fixtures are also dimmable and controllable but require additional sensors and or controls.

Combination of the Above

It should seem obvious that the maximum demand and energy reduction potential would lie in a careful light reduction effort followed by or incorporated with implementation of more efficient and effective lighting apparatus responding to effective control mechanisms.

To that end the L.E.D. fixture applications with associated controls and applied to the considered appropriate light levels represents the maximum reduction opportunity consistent with adequate, appropriate and aesthetic light application.

Lighting Evaluation

In consideration of the previous discussion I prepared excel worksheets modeling the estimated impact of several of the scenarios described. The models represent the energy, demand and expense reductions likely to occur based on the lamps estimated operating hours, number of lamps, utility rates and estimated implementation expenses. All of the variables are available for revision by the facility management and the revised work sheets will show the impact of the revision. The number of lamps involved in all models is based on the current total lamps by area as provided by Chris Vaillancourt.

The following lighting models were developed:

Delamping: Removing lamps from areas that have higher than required or desired lighting levels throughout the facility. The major delamping is anticipated to occur in classrooms where shading is currently applied, hallways where activity-based lighting requirements are low and the elementary gym. Effective delamping requires that a light level assessment be made prior to delamping. The only significant expense beyond in-house labor is lamp disposal for lamps physically removed from the troffers. Note: it is not necessary to remove either lamps from the troffers but is recommended.

Lamp replacement: Replacing current 32-watt t-8 lamps with L.E.D. tubes which fit easily into the existing troffers. Although this is expected to provide adequate and appropriate light levels throughout the premise in most applications, there may be some areas where the lighting targets are not met by the currently available L.E.D tubes and replacements will not be possible. The number of potential replacements will hinge on the light study. Thorough reflector and lens cleaning is recommended at this time.

Fixture replacement: Replacing existing troffers with high performance, dimmable L.E.D sourced indirect unlensed troffers. Again it is presumed that not all applications will allow

simple replacement. Some applications may require higher output or additional troffers to achieve the lighting goals.

2. Heating System Circulation Pumps

The heating system hot water from the boilers is circulated throughout the facility by 2 ABB variable speed drive-controlled pumps. The pumps appear to be controlled by a differential pressure control at the system supply and return headers adjacent to the pumps. The pumps appear to be operating in a sequential scenario. As observed, the lead pump was running at a much higher speed than the secondary pump. I believe that the pumps were designed to provide redundant service which provides continuing operation upon failure of one of the pumps. This scenario however provides twice the design capacity required even during peak load periods.

The current operating scenario is expected to provide the pressure needed to supply any of the radiation devises on the system with adequate flow to achieve the rated heat output with essentially all of the radiation devises calling for rated heat output.

This control scenario provides more pressure and uses more power than required for most if not all of the operating hours due to the fact that the design loads typically are greater than any realized heating loads. A more effective control strategy would provide only the pressure required for the heating loads currently being experienced. There are several control options to consider. A frequently used option is to monitor and control the pressure required at the most remote radiation devise on the system. The laws of physics relating to pump operations (pump laws) indicate that operating 2 pumps in parallel results in lower total power requirements and less energy than a sequential operation as is currently in use. This scenario will be effective for the upper operating range of operations. An investigation is required to determine at which speed point the parallel operation should begin. At the lower load range, single pump operation at low speed will result in the lowest total power use

Additional pump power and reductions are available by adding an "unoccupied mode set back" control, and "warm weather shutdown "controls for both occupied and unoccupied mode operations. The "unoccupied mode setback" control recognizes that less pressure and flow are required for the reduced unoccupied period loads during, nights, weekends and holidays, and reduces the pressure setpoint and thereby the power and energy used.

The "warm weather shut down" control recognizes that at some temperature conditions, heating is no longer needed in the facility and shuts the pumps off. This control reduces the pumping requirements but also eliminates the flow of heated water throughout the system which provides inadvertent, and undesirable, heating of the facility. The Boiler system includes

an option for warm weather shut down but is not currently operational. Boiler and pump system controls need to be coordinated but both can be effectively utilized.

Although providing the enhanced pump system controls may be accomplished independently at the VFD control. Providing the enhanced controls through the DDC control system will allow remote monitoring and a wider range of control operations and integrations with other operating systems. An Excel model was prepared for this opportunity.

Air Handlers

The largest air handler in the facility serves the auditorium. It is equipped with a cooling system.

The unit is reported to operate in a temperature maintenance mode for most of the year. The auditorium space is sparsely occupied for all school session days and only sees occupancy levels requiring full capacity operation during performances. It also has a summer operating requirement that includes cooling but again the space has low occupancy levels except for performance periods. These conditions are in many respects, similar to gym operations and can be effectively served by a "large space" control configuration that utilizes variable speed fan control to reduce fan power and energy for the low occupancy time periods while maintaining set point temp and adequate ventilation. The system can be operated as a single zone variable flow application. Continuous operation at low speeds or at variable but low speeds requires less energy than intermittent operation, eliminates the whine and associated strain on belts and bearings associated with startups and operates at a much lower and less objectionable noise level than full speed intermittent operation. The low speed continuous operation also allows more effective operation of the associated cooling system. This unit is currently controlled by the DDC system and would allow the addition of additional control features at minimum expense. An Excel model was prepared to analyze this opportunity.

4 small air handlers exist in the facility. They service several areas in the facility and are controlled by a Metasys pneumatic control system.

These units are not variable speed control. The units serve music rooms and a gym which are both characterized as "large spaces" having predominantly low occupancies with intermittent periods of higher occupancies. These air handlers will respond to variable speed operation and reduced power and energy use when equipped with variable speed drives and DDC control. An excel model was prepared for this opportunity.

4. Univents

Many of the classrooms have the heating, ventilation and air circulation needs served by Trane Univents.

These units are reported to have variable speed motors and originally were able to modulate fan speed in response to heat requirements. Over time a significant share of these units have lost modulating capacity and operate as on or off units only. Their continuous modulating speed operations will use less power and energy than intermittent full speed operation.

It is noted, that the current intermittent operation of the failing units does not meet the state code and ASHRAE recommendations for continuous ventilation in classroom spaces.

Although power and energy reductions are anticipated, with the restoration of the variable speed operating capability of all of the classroom units, restorating the continuous ventilation capability appears to be the more compelling motivation for implementing variable speed operation restoration to these units. An Excel model of this opportunity was prepared.

Results

Table 1. Summary of the Energy Efficiency Opportunities to Reduce Energy Costs at the Drummond School. Note that payback periods do not include available incentives (such as from Focus on Energy).

	Energy			Demand	N	Monthly	Distribution					Payback
	Savings	E	nergy	Reduction	D	Demand	Demand	Ar	nual Bill	(Cost of	Period
	(kWh)	Sav	vings (\$)	(kW)	Sa	vings (\$)	Savings (\$)	Sa	vings (\$)	Me	easure (\$)	(Years)
Lighting Options												
1. Delamping	38,468	\$	2,654	16	\$	1,925	\$ 231	\$	4,810	\$	269	0.06
2. LED Relamping	64,895	\$	4,475	29	\$	3,332	\$ 332	\$	8,139	\$	16,944	2.1
3. Troffer Replacement	94,282	\$	6,420	39	\$	4,572	\$ 531	\$	11,523	\$	61,596	5.4
Other Measures												
Auditorium Overhead Can LEDs	2,906	\$	191	3	\$	76	\$ 4	\$	273	\$	600	2.2
Auditorium Side Mount Flood LED Lamps	3,563	\$	235	2.4	\$	78	\$ 4.00	\$	317	\$	75	0.24
Hot Water Ciculation Pump Controls	28,846	\$	2,012	4	\$	552	\$ 89	\$	2,653	\$	5,000	1.9
Auditorium Air Handler	17,611	\$	1,189	7.5		223	45	\$	1,467	\$	7,000	4.8
Four Small Air Handler VFDS Control	4,197	\$	277	3	\$	155	\$ 20	\$	452	\$	6,000	13
Maximum Opportunity	151,405	\$	10,324	59				\$	16,685	\$	80,271	5
Includes the Troffer Replacement												
Annual Energy, Demand and Bill Savings	34%			34%					35%			
Based on 2018-2019 Billing												

All of the lighting opportunities modeled and evaluated appear to be effective in reducing power and energy and result in simple payback periods well within the life expectancy of the application. The troffer replacement option provides the most power and energy reduction opportunity but does not yield as early a payback as the other options given that extended equipment life and improved lighting environments are not considered.

The small air handler VFD and control measure does not appear to be available without an expansion of the DDC controls to include these units. The addition of the DDC control upgrade to this measure results in a very long payback period.

All of the additional opportunities evaluated also appear to be effective in reducing power and energy use in the facility and simple paybacks are within the life of the application with the exception of the Uninvent repair. However, as previously noted power and energy reduction should not be the primary motivation for implementing this opportunity.

The simple payback assessments do not recognize the value of extended system life or improved instructional environments. They do however provide a key element for more sophisticated evaluations which include unique school administrative inputs and perspectives.

The estimated power and energy reduction values of each measure modeled as well as the totals and associated paybacks are shown on a summary worksheet. The individual opportunity worksheets are also available for revision and confirmation of input parameters and

applications. It is noted that all cost information is based on estimates only and no "proposals" for any opportunity implementation were collected.

RECOMMENDATIONS

- Recommended Lighting Study: To achieve the maximum electric power and energy reduction possible, a lighting study is recommended to determine the desired but minimum acceptable light levels for all areas served by T-8 troffers followed by installation of high performance, indirect L.E.D. troffers with dimming control and associated controls appropriate for the application wherever possible.
- Recommended DDC Control Hot Water System: Implementation of DDC control for the hot water heating circulation pumps with application of parallel pump control, load reset warm weather shutdown and occupied, and unoccupied setback is recommended.
- Recommended DDC Control Auditorium: Installation of a variable speed drive and control for the auditorium and with DDC control application as a single zone variable air volume application.
- Recommended: Upgrading Pneumatic System Control for the 4 Small Air Handlers:
 Consider upgrading the pneumatic system control for the 4 small air handlers with the
 implementation of VFDs and associated large space management controls upon
 completion of the DDC improvements.
- Install a datalogger, like an eGauge, to monitor moment-by-moment electrical consumption. A basic unit would cost \$700-\$800 and a more detailed logger would add about \$35/current transformer. This data would be useful for future energy efficiency analysis and could be coupled with solar generation analysis. They are easily ordered online and installed by any electrician.

Annex 1. Delamping and Conversion of t-8 lamps to LED, Data, Assumptions and Analysis.

SCHOOL	LIGHTING	ASSESSMENT	R.A.DREVLOW	1			
OPTION A	A	DELAMPING					
	REMOVE	ONE OR MORE T-8 4 FT I	AMPS FROM EACH ELE	ECTRONICALLY	BALLASTED		
	2X2 TRC	FFER WHERE THE REDUC	ED LIGHT LEVEL IS DEE	MED DESIREAE	BLE OR ADEQU	ATE AND APPRO	PRIATE
	FOR INST	RUCTIONAL, ACTIVITY A	ND AESTHETIC REQUIR	EMENTS.			
BENEFIT	Α	POWER DEMAND AND E	NERGY COST REDUCTION	NC			
	В	ACHIEVE DESIRED LIGHT	LEVELS CURRENTLY AC	CHIEVED BY SHA	ADING OF TRO	FFERS	
	С	TRANSFER ASSOCIATED	HEATING TO A LOWE	R COST FUEL			
	D	REDUCE COOLING LOA	O WHEN COOLING IS	DESIRED			
	Е	ZERO INVESTMENT EXPE	NSE IF DONE IN BY IN	HOUSE STAFF			
	F	MARGINALLY IMPROVES	LUMINAIRE EFFICIENCY	1			
	G	PROCESS CAN BE REVER	SED AT NO EXPENSE IF	APPLICATIONS	CHANGE		
		OR LIGHTING TARGET CI	HANGES				
DOWN S	IDES						
	Α	LESS POWER AND DEMA	ND REDUCTION POTER	NTIAL THAN			
		OTHER OPTIONS					
	В	REDUCTION IN UNIFORI	M LIGHT DISTRIBUTION	N FROM TROFF	ERS		
	C.	NOT COMPATIBLE WITH	DIMMING OPTIONS				

				LIBRA	RY	MU:	SIC	UP	STAIRS	H.5	S. GYM		
SCHOOL	WIDE LAMP TOTAL			CAFE	TERIA	TEC	H						
				HALL	WAYS	MID	DLE SCH	1					
	AREA	EL	EMENTARY	ETC		HAL	LWAYS					TO	TAL
	LAMPS		597		959		844		634		146		3180
	DELAMP POTENTIAL		20%		25%		10%		15%		0%		179
	LAMPS		119		240		84		95		0		539
	LAMP WATTAGE		30		30		30		30		30		
	TOTAL KW REDUCTION	N	3.6		7.2		2.5		2.9		0.0		16.2
	AVE MO FACILITY DEM		135.0		135.0		135.0		135.0		135.0		135.
	% REDUCTION		3%		5%		2%		2%		0%		129
	EST. AVE ANNUAL		2200		2500		2500		2200		3000		,
	OPERATING HOURS		2230		2000		2000		LLUU		3333		
	ESTIMATED ANNUAL		7880.4	179	981.25		6330		6276.6		0	7 3	8468.2
	KWH REDUCTION		, 500.4	- ''	. 5 20		3000	-	22, 3.0			+	. 5 , 50, 2
	TOTAL FACILITY KWH	USF	450000		50000	4	50000		450000		150000		450000
	REDUCTION %	UJL	1.8%	- 4	4.0%	-4.	1.4%		1.4%		0.0%		8.5%
	CURRENT ON PEAK	\$		\$	0.075	¢ (0.075	•	0.075	¢	0.075		0.57
	KWH RATE	Ψ	0.073	Ψ	0.073	Ψ	0.075	Ψ	0.073	Ψ	0.073		
	CURRENT OFF PEAK	\$	0.045	\$	0.045	¢ (0.045	•	0.045	¢	0.045		
	KWH RATE	Ψ	0.043	Ψ	0.043	Ψ	0.043	Ψ	0.043	Ψ	0.043		
	EST ON PEAK USE		0.8		0.8		0.8		0.8		0.8		
	EFFECTIVE RATE	\$	0.07	\$	0.07	4	0.07	•	0.07	\$	0.07		
	EST.ANNUAL ENERGY	\$	543.75		40.71		36.77		433.09	\$	-	T & 2	.654.31
	COST REDUCTION	Φ	545.75	Φ 1,Z	.40.71	\$4	36.77	Φ,	+33.07	Ф	-	Φ Z	.,054.51
	CURRENT MO DEMAN	D \$	11.00	\$	11.00	¢.	11.00	¢	11.00	¢.	11.00		
	RATE ,PER KWPER MO		11.00	D D	11.00	Ф	11.00	P	11.00	Ф	11.00		
	EST AVE DEMAND		0.9		0.9		0.9		0.9		0.9		
		.D	0.9		0.9		0.9		0.9		0.9		
	COINCIDENCE FACTO		400		055		207	_	245			· ·	4.005
	EST ANNUAL DEMAND	\$	428	\$	855	\$	297	\$	345	\$	-	\$	1,925
	CHARGE REDUCTION		0.05		0.05		0.05		0.05		0.05		
	DIST DEMAND		0.95		0.95		0.95		0.95		0.95		
	COINCIDENCE				4.05		4.05		4.05		4.05		
	CURRENT DIST DEMAN		1.25		1.25		1.25		1.25		1.25		
	RATE (PER KWPER MO)				100								
	EST ANNUAL DIST	\$	51	\$	103	\$	36	\$	41	\$	-	\$	231
	DEMAND CHARGE REI												
	EST TOTAL POWER AN		1,023	\$	2,199	\$	769	\$	819	\$	-	\$	4,810
	ENERGY EXPENSE RED												
	EST LAMP DISPOSAL	\$	0.50	\$	0.50	\$	0.50	\$	0.50	\$	0.50		
	EXPENSE PER LAMP									1.			
	EST TOTAL DISP[OSAL	\$	59.50	\$ 1	20.00	\$ 4	42.00	\$	47.50	\$	-	\$	269.00
	EXPENSE												
	EST SIMPLE PAYBACK		0.06		0.05		0.05		0.06	#[OIV/0!		0.0
	OF EXPENSE												

Annex 2. LED Relamping Data, Assumptions and Analysis.

SCHOOL	LIGHTING	S ASSESSMENT R.A.DREVLOW
OPTION A	4	RELAMP WITH 4 FT HIGH PERFORMANCE,HIGH OUTPUT LED LAMPS
	REPLACE	EXISTING T-8 LAMPS ADEQUATE FOR THE LIGHTING REQUIREMENTS OF THE
	AREA WIT	TH 4 FT LED TUBES.
BENEFIT	Α	ACHIEVES POWER AND ENERGY REDUCTION FOR THE ENTIRE FIXTURE LOAD
J,,,,	В	ACHIEVE DESIRED LIGHT LEVELS CURRENTLY ACHIEVED BY SHADING OF TROFFERS
	С	TRANSFER ASSOCIATED HEATING TO A LOWER COST FUEL
	D	REDUCE COOLING LOAD WHEN COOLING IL, MORE THAN DELAMPING
	E	MODEST INVESTMENT EXPENSE IF DONE BY IN HOUSE STAFF
	F	MARGINALLY IMPROVES LUMINAIRE EFFICIENCY
	G	ADDITIONAL LAMPS CAN BE ADDED IF FULL COMPLEMENT WAS NOT
		INITIALLY APPLIED OR ZONE USE CHANGES .
	Н	LAMPS CAN BE REMOVED IF LIGHT LEVEL IS DEEMED EXCESSIVE
	I	LED TUBES MAY BE DIMMABLE FOR ADDITIONAL CONTROL
	J.	VERY LONG LAMP AND TROFFER LIFE EXTENSION.
DOWN SI	DES	
	Α	LUMEN DEPRECIATION OF AGED REFLECTORS AND LENSES REMAIN
	В	REDUCTION IN UNIFORM LIGHT DISTRIBUTION FROM TROFFERS
		WILL BE INCURRED IF LESS THAN FULL COMPLEMENT OF LAMPS IS USED

						LIB	RARY	М	USIC	UF	STAIRS	H.:	S. GYM		
SCHOOL	WIDE LAM	P TOTAL					FETERIA		CH	-					
JOHOOL	VVIDE DAIVI	I TOTAL					LLWAYS		IDDLE SC	'H		-			
	AREA			FIF	EMENTARY				ALLWAYS			+		TC	TAL
	LAMPS				597		959	,	844		634		146	-	3180
		NVERSION	<u> </u>		80%		75%		80%		75%		50%	+	17%
	D tivii CC	LAMPS			478		719		675		476		73	+	17 70
	FXISTING	LAMP WA	TTS		30		30		30		30	-	30		
		D LAMP W			18		18		18	+	18	+-	18	+	
		ON (KWPE			0.012		0.012		0.012	+	0.012	+-	0.012	+	
		V REDUCT			5.7		8.6		8.1		5.7	+	0.876		29
	_	ACILITY D			135.0		135.0		135.0		135.0		135.0		135.0
	% REDUC		EIVIAIND		4%		6%		6%		4%		133.0		22%
															22%
	EST. AVE				2200		2500		2500		2200		3000		
		NG HOURS			7000		04570		20257		10550		2/20		(4005
		D ANNUA	L		7880		21578		20256		12553		2628		64895
	KWH RED				450000		450000		150000				150000		450000
		CILITY KW	/H USE		450000		450000		450000		450000	- 4	450000	,	450000
	REDUCTIO	ON %			1.8%		4.8%		4.5%		2.8%		0.6%		14.4%
										_					
			KWH RATE		0.075	\$	0.075	-	0.075		0.075	-	0.075		
			KWH RATI	\$	0.045	\$	0.045	\$	0.045	\$	0.045	\$	0.045		
	EST % ON	I PEAK			80%		75%		75%		80%		80%		
	EST AVE E	FFECTIVE	RATE	\$	0.069	\$	0.068		0.068	\$	0.069	\$	0.069		
	EST. ANN	UAL ENER	GY COST	\$	544	\$	1,456	\$	1,367	\$	866	\$	181	\$	4,415
	MO DEMA	AND RATE		\$	11.00	\$	11.00	\$	11.00	\$	11.00	\$	11.00		
	PER KWPE	ER MO													
	MONTHLY	COINCID	INCE		0.9		0.9		0.8		0.9		0.8		
	FACTOR														
	MO DIST	RATE		\$	1.25	\$	1.25	\$	1.25	\$	1.25	\$	1.25		
	PER KWPE	ER MO													
	MO COIN	CIDENCE			0.9		0.9		0.9		0.9		0.9		
	FACTOR														
	EST.ANNU	JAL MO. D	EMAND	\$	681	\$	1,025	\$	856	\$	678	\$	93	\$	3,332
	EST.ANNU	JAL DIST D	EMAND	\$	77.37	\$	116.52	\$	109.38	\$	77.03	\$	11.83	\$	392.13
	EST TOTA	L POWER	AND	\$	1,302	\$	2,598	\$	2,332	\$	1,621	\$	286	\$	8,139
	ENERGY	COST		Ė	•	Ė		Ť		+ -	•	+		+	
		AMP COS	T	\$	6.00	\$	6.00	\$	6.00	\$	6.00	\$	6.00		
		L LAMP EX		\$	2,866	\$	4,316		4,051		2,853	\$	438	\$	14,523
		AND BAL		\$	1.00	\$	1.00	\$		\$	1.00	\$	1.00	+	,
		EXP.PER L		-		_									
		L DISPOS		\$	478	\$	719	\$	675	\$	476	\$	73	\$	2,421
	EXPENSE			-	.,,	+		+	-, -	+	., 0	+		+	_, 1
		AL EXPENS	F	\$	3,343	\$	5,035	\$	4,726	\$	3,329	\$	511	\$	16,944
		SIMPLE PA		Ψ	2.6	Ψ	1.9	4	2.0	Ψ	2.1	Ψ	1.8	-	2.1
			" DACK		2.0		1.7		2.0		2.1		1.0		2.1

Annex 3. Troffer Replacement Data, Assumptions and Analysis.

SCHOOL	LIGHTING	G ASSESSMENT R.A.DREVLOW
OPTION A	4	REPLACE EXISTING TROFFERS WITH HI PERFORMANCE INDIRECT HIGH OUTPUT TROFFERS.
BENEFIT	Α	ACHIEVES POWER AND ENERGY REDUCTION FOR THE ENTIRE FIXTURE LOAD
	В	ACHIEVE DESIRED LIGHT LEVELS CURRENTLY ACHIEVED BY SHADING OF TROFFERS
	С	TRANSFER ASSOCIATED HEATING TO A LOWER COST FUEL
	D	REDUCE COOLING LOAD WHEN COOLING IS, MORE THAN DELAMPING
	E	MODEST INVESTMENT EXPENSE IF DONE BY IN HOUSE STAFF
	F	MARGINALLY IMPROVES LUMINAIRE EFFICIENCY
	G	ADDITIONAL LAMPS CAN BE ADDED IF FULL COMPLEMENT WAS NOT
		INITIALLY APPLIED OR ZONE USE CHANGES .
	Н	LAMPS CAN BE REMOVED IF LIGHT LEVEL IS DEEMED EXCESSIVE
	I	LED TUBES MAY BE DIMMABLE FOR ADDITIONAL CONTROL
	J.	VERY LONG LAMP AND TROFFER LIFE EXTENSION.
DOWN SI	DES	
	Α	LUMEN DEPRECIATION OF AGED REFLECTORS AND LENSES REMAIN
	В	REDUCTION IN UNIFORM LIGHT DISTRIBUTION FROM TROFFERS
		WILL BE INCURRED IF LESS THAN FULL COMPLEMENT OF LAMPS IS USED

					LIE	BRARY	М	JSIC	UP	STAIRS	H.:	S. GYM	
SCHOOL	WIDE LAMP TOTAL				CA	AFETERIA	TE	CH					
					HA	ALLWAYS	M	DDLE SC	H				
	AREA		EL	EMENTARY	/ ET	С	HA	ALLWAYS					TOTAL
	LAMPS			597		959		844		634		146	318
	LAMP CONVERSION	١		80%		75%		80%		75%		50%	17
	TROFFERS			119		180		169		119		18	
	EXISTING TROFFER	WATTS		120		120		120		120		120	
	PROPOSED TROFFE	R WATTS		55	+	55		55		55		55	
	REDUCTION (KWPE			0.065	+	0.065		0.065		0.065		0.065	
	TOTAL KW REDUCT	· · · · · · · · · · · · · · · · · · ·		7.8	+	11.7		11.0		7.7		1.2	
	AVE MO FACILITY D			135.0		135.0		135.0		135.0		135.0	135
	% REDUCTION	LIVIAIVO		6%		9%		8%		6%		1%	29
	EST. AVE ANNUAL			2200		2500		2500		2200		3000	
	OPERATING HOURS	<u> </u>		2200		2300		2300		2200		3000	
	ESTIMATED ANNUA			17074	+	29220	-	27430		16999	+	3559	9428
	KWH REDUCTION	\L		17074	-	29220		2/430		10777		3559	9420
		WILLICE		450000		450000		450000		150000		450000	45000
	TOTAL FACILITY KV	VH USE		450000		450000		450000	- 4	150000		450000	45000
	REDUCTION %	10441 5475	•	3.8%		6.5%		6.1%	•	3.8%		0.8%	21.0
	CURRENT ONPEAK			0.075	\$		-	0.075		0.075		0.075	
	CURRENT OFFPEAK	KWH RATE	\$	0.045	\$		\$	0.045	\$	0.045	\$	0.045	
	EST % ON PEAK			80%		75%		75%		80%		80%	
	EST AVE EFFECTIVE		\$	0.069	\$	0.068		0.068		0.069	<u> </u>	0.069	
	EST. ANNUAL ENER	GY COST	\$	1,178	\$	•		1,852		1,173	\$	246	\$ 6,42
	MO DEMAND RATE		\$	11.00	\$	11.00	\$	11.00	\$	11.00	\$	11.00	
	PER KWPER MO												
	MONTHLY COINCID	INCE		0.9		0.9		0.8		0.9		0.8	
	FACTOR												
	MO DIST RATE		\$	1.25	\$	1.25	\$	1.25	\$	1.25	\$	1.25	
	PER KWPER MO												
	MO COINCIDENCE			0.9		0.9		0.9		0.9		0.9	
	FACTOR												
	EST.ANNUAL MO. D	EMAND	\$	922	\$	1,389	\$	1,159	\$	918	\$	125	\$ 4,51
	EST.ANNUAL DIST	DEMAND	\$	104.77	\$	157.79	\$	148.12	\$ 1	104.31	\$	16.01	\$ 53
	EST TOTAL POWER	AND	\$	2,205	\$	3,519	\$	3,158	\$	2,195	\$	387	\$ 11,46
	ENERGY COST												
	EST. PER TROFFER	COST	\$	100.00	\$	100.00	\$	100.00	\$ '	100.00	\$	100.00	
	EST TOTAL TROFFE			11,940		17,981		16,880		11,888		1,825	\$ 60,51
	EST. LAMP AND BAI	LAST	\$	5.00	\$		\$		\$	1.00	\$		
	DISPOSAL EXP.PER		_						7				
	EST.TOTAL DISPOS		\$	597	\$	180	\$	169	\$	119	\$	18	\$ 1,08
	EXPENSE		.	3,,	+		+	.07	*	,	+		Ψ 1,00
	EST. TOTAL EXPENS	SF.	\$	12,537	\$	18,161	\$	17,049	\$ 1	12,006	\$	1,843	\$ 61,59
	ESTIMATE SIMPLE P		Ψ	5.7	Ψ.	5.2	Ψ	5.4	Ψ	5.5	Ψ	4.8	5
	COLUMN TE SHALL FE	ARS)		5.7		5.2		3.4		5.5		+.0	3

Annex 4. Auditorium Overhead Can LED Lamps Data, Assumptions and Analysis.

SCHOO	LIGHT REDUCTION						
	DRUMMOND K-12						
APPLICA	ATION						
REPLAC	CE 200 WATT INCANDE	SCENT DIM	MABL	E CAN LIG	HTS WITH E	QUIVALE	NT OUTPU
LED RE	FLECTOR FLOODS						
		EXISTING	LE)	REDUCTIO	NC	
	LAMP WATTAGE	200		45	155		
	# LAMPS	25		25			
	TYPE	INC	LE)			
	EST ANNUA LHRS	1000		1000	0		
	EST AVE USAGE	0.75		0.75			
	EST AVE DEMAND	3.75		0.84	3		
	EST ANNUAL KWH	3750		843.75	2906		
	ON PEAK RATE	\$ 0.075	\$	0.075			
	OFF PEAK RATE	\$ 0.045	\$	0.045			
	ON PEAK %	70%		70%			
	EFFECTIVE RATE	\$ 0.066	\$	0.066			
	EST ANNUAL	\$247.50	\$	55.69	\$191.81		
	ENERGY EXP						
	MO DEMAND RATE	\$ 11.00	\$	11.00			
	EST MO DEMAND	0.2		0.2			
	COINCIDENCE						
	EST ANNUAL	\$ 99.00	\$	22.28	\$ 76.73		
	MO DEMAND CH.						
	DIST DEMAND RAT	\$ 1.25	\$	1.25			
	ANNUAL DIST	0.1		0.1			
	DEMAND COIN.						
	EST ANNUAL	\$ 5.63	\$	1.27	\$ 4.36		
	DIST DEMAND						
	EXPENSE						
	EST TOTAL POWER						
	AND ENERGY	\$352.13	\$	79.23	\$ 273		
	EXPENSE						
	INVESTMENT PER L	AMP	\$	24.00			
	TOTAL INVESTMEN	T	\$	600.00			
	SIMPLE PAYBACK	(YEARS)		2.2			

Annex 5. Auditorium Side Mount Flood LED Lamps Data, Assumptions and Analysis.

SCHOOL	LIGHT REDUCTION								
	DRUMMOND K-12								
APPLICAT	ION								
REPLACE	200 WATT 100WATT W	ATT FLO	OODL	AMPS	S(SIDE M	OUNT	Γ) WITH E	QUIVALE	NT OUTPUT LED
FLOODS									
		EXIS	TING	LEC)	RED	UCTION		
	LAMP WATTAGE		100		15		85		
	# LAMPS		26		15				
	TYPE	INC		LED)				
	EST ANNUA LHRS		1500		1500		0		
	EST AVE USAGE	1	100%		100%				
	EST AVE DEMAND		2.6		0.23		2.38		
	(KW								
	EST ANNUAL KWH		3900		338		3563		
	ON PEAK RATE	\$ 0	.075	\$	0.075				
	OFF PEAK RATE	\$ 0	.045	\$	0.045				
	ON PEAK %		70%		70%				
	EFFECTIVE RATE	\$ 0	.066	\$	0.066				
	EST ANNUAL	\$25	7.40	\$	22.28	\$	235.13		
	ENERGY EXP								
	MO DEMAND RATE	\$ 1	1.00	\$	11.00				
	EST MO DEMAND		0.25		0.25				
	COINCIDENCE								
	EST ANNUAL	\$ 8	5.80	\$	7.43	\$	78.38		
	MO DEMAND CH.								
	DIST DEMAND RATE	\$	1.25	\$	1.25				
	ANNUAL DIST		0.1		0.1				
	DEMAND COIN.								
	EST ANNUAL	\$	3.90	\$	0.34	\$	3.56		
	DIST DEMAND								
	EXPENSE								
	EST TOTAL POWER								
	AND ENERGY	\$34	7.10	\$	30.04	\$	317.06		
	EXPENSE								
	INVESTMENT PER LAM	Р		\$	5.00				
	TOTAL INVESTMENT			\$	75.00				
	SIMPLE PAYBACK	(YEA	RS)		0.2				

Annex 6. Hot Water Circulation Pump Controls, Data, Assumptions and Analysis.

HOOL ENERGY ASSESSME	ENT		R D	DREVLOW									
DRUMMOND K12		MAY		2019									
JUST HOT WATER HEAT	ING CIRC F	PUMP CONT	TROL										
EXISTING CONTROL		Δ.	APPE/	RS TO BE I	DIFFERENTIAL	PRESSURE	AT H	EAD END					
		S	EQUI	ENTIALLY									
PROPOSED CONTROL		R	REMO	TE PRES! PI	US ON OCC	AND UNOC	C W	WSD AND	UNOCC S	ETBAC	CK		
SYSTEM	EXISTING	i			PROPOSED								
	PUMPS		TC	TAL									
NUMBER	1	2		2	1	2		2					
AMPS	28	12	_	40	15	15	•	30					
VOLTS	208	208			208	208							
POWER	10.1	4.3	-	14.4	5403.84		•	10807.68					
ANNUAL OPERATING	5000	5000		5000	4000	4000		4000					
HOURS	5555	3000		3300	,,,,,	.000		,000					
ANNUAL EFFECTIVE				0.9				0.6					
LOAD FACTOR				0.7				0.0					
ANNUAL EFFECTIVE L	OAD			13.0				9			4.0		
KW	CAD			13.0				7			4.0		
ANNUAL KWH				64846				36000					
ON PEAK ENERGY RAT	_			0.075				30000	0.075				
OFF PEAK ENERGY RAT				0.075					0.075				
ON PEAK %	1 -			70%									
									\$ 0.60				
EEFFECTIVE RATE	EVDENICE		\$	0.066				22/00	\$ 0.063		2.012		
EST ANNUAL ENERGY	EXPENSE		\$	4,280			\$	2,268.0		\$	2,012		
MO DEMAND CH			\$	11.00				11					
ANNUAL MO DEMANI				0.4				0.4					
COINCIDENCE FACTO				0.6				0.4					
ESTIMATED ANNUAL D		Н	\$	1,027			\$	475.20		\$	552		
MO. DIST . DEMAND (CH.		\$	1.25			\$	1.25					
EST. DIST CHARGE													
COINCIDENCE FACTO				150%				150%					
EST ANNUAL DIST DEN			\$	291.81			\$	202.50		\$	89		
TOTAL POWER AND EN	NERGY RED	DUCTION								\$	2,653		
COST TO IMPLEMENT					\$ 5,000								
SIMPLE PAYBACK(YEAR	!S)				1.9								
NOTES													
SYSTEM CURRENTLY IS						VES.							
THESE VALVES RESPON													
A- 3 WAY VALVES BYPA													
2 WAY VALVES LIMIT FL													
FINDING A COMPRON	IISE THAT I	IS EFFECTIV	E OV	ER THE FUI	L RANGE OF	OPERATING	IRE	QUIERES S	SOME OPE	BERVAT	TIONS A	ND EXPERIM	IENTATIO
ALTERNATIVES													
ALTERNATIVE SELECTION	ON REQUIR	RES ASSESSI	MENT	OF TYPES	AND NUMBE	RS OF CON	TROL	VALVES C	OF EACH T	YPE.			
1. IMPLEMENT AND TU	INE A COM	IPROMISE	REMO	OTE PRESS	URE BASED C	ONTROL L	INOC	CUPIED R	ESET AND	OCC	AND UN	IOCC WWSE).
2. CONVERT EXISTING	3 WAY TO	2 WAY VALV	/ES										
3. LOCK 3 WAY VALVE I	DVDACCEC /	CLOCED TO	CDE	ATE 2 14/41/	VALVEC AND			TE END D	DECCLIDE				

Annex 7. Auditorium Air Handler, Data, Assumptions and Analysis.

SCHOOL ENERGY ASSESSME	NT			R DREVLO	w					
DRUMON			13-May							
SCENARIO										
THE SCHOOL AUDITORIUM	IS SERVED F	BY A 15 000 C	FM AIR H	ANDI FR						
THE UNIT IS REPORTED AS C					D TEM	- ΜΔΙ	NTFNAN	CE MODE		
THE LARGE FAN OPERATING									ING SY	STEMS
THESE CREATE EXCESSIVE B										
STEADY STATE LOW FLOW /										LIXITOIN.
		BOILER AND				OT DI	LL3 AND	IIVII KOVE E	VENOT	
A VFD AND APPROPRIATE CO						EDIT	CTION PO	TENITIAL		
THE CURRENT FAN CAPACIT									LE DEA	/
		ING REQUIRE								
THIS SUGGESTS A SIGNIFIC										
GIVEN THE COOLING LOAD										
COOLING LOAD FAN REDUC	TIONS WO	OLD NEED TO	RE COMI	PALIBLE IC	, 600	LING	SOURCE	APPLICATIO	N5.	
	CURRENT		DD02005							
5444 54544 (654)	CURRENT		PROPOSE	:D						
FAN RATING (CFM)	15000		15000							
MOTOR H.P	20									
EFF	0.9									
POWER FACTOR	0.87									
LOAD AT RATED CONDITION		KW								
CURRENT MOTOR	40									
AMPS										
OPERATING MOTOR P.F.	0.87									
EFFECTIVE MOTOR POWER		KW		KW		7.5				
CURRENT OP CONDITION	87%		35%							
ANNUAL OPERATING HRS	3000		4000							
ESTIMATED ANNUAL	37611	KWH	20000		1	7611				
ENERGY USE										
ON PEAK ENERGY	0.075									
OFF PEAK ENERGY	0.045									
% ON PEAK	75%		75%							
EFFECTIVE ENERGY RATE	\$ 0.068		\$ 0.068							
EST ANNUAL ENERGY EXPEN	\$ 2,539		\$ 1,350		\$ 1	,189				
MO DEMAND RATE	11		11							
MO COINCIDENCE FACTOR	0.5		0.9							
ESTIMATED ANNUAL	\$ 827		594		\$	233				
MO DEMAND CHARGES										
DIST DEMAND RATE	\$ 1.25		1.25							
ANNUAL DIST. DEMAND										
COINCIDENCE FACTOR	0.6		0.9							
EST. ANN. DIST DEMAND	\$ 113		\$ 68		\$	45				
EXPENSE										
TOTAL EST ANN.POWE AND	ENERGY									
EXPENSE	\$ 3,479		\$ 2,012		\$ 1,	467				
ESTIMATED VFD AND CONT		\$ 7,000								
IMPLEMENTATION EXPENSE										
ESTIMATED SIMPLE PAYBACH		4.8	YEARS							
		-		-	-			-	-	1

Annex 8. Four Small Air Handler VFDS Control, Data, Assumptions and Analysis.

SCHOOL ENERGY A	SSESSMEN	IT		R DREVLOW					
FACILITY		DRUMMON	ID K12		13-May				
ENERGY REDUCTIO	N OPPORT	UNITY							
THE FACI	LITY HAS 4	SMALL PNE	UMATICA	LLY CONTROL	LED AIR H	ANDLERS			
THE PNE	UMATIC CO	ONTROL PR	OVIDES A	CONSTANT V	OLUME AI	R SUPPLY	FOR THE RO	OMS/ZON	ES
BASED O	N THE MAX	KIMUM COC	DLING LO	AD LIKELY TO	BE 6 ACH	OR MORE			
CONTING	OUS OPERA	TION IS RE	QUIRED F	OR ALL OPERA	TING HOL	JRS TO PR	OVIDE VENT	ILATION.	
TYPICAL I	HEATING LO	OADS CAN	NORMAL	LY BE ACCOM	IPLISHED V	VITH 2 TO	3 ACH.		
THE SIGN	NIFICANT F	AN SPEED	AIR FLOW	/ REDUCTION	WILL ALLC	W SIGNIF	ICANT FAN	POWER RE	DUCTIONS
FOR ALL	HEATING A	ND MOST	COOLING	LOAD PERIOD	S.				
VFDS AN	D DIGITAL (CONTROL V	VILL BE RE	QUIRED TO A	CCOMPLIS	SH THE DE	SIRED POW	ER AND EN	ERGY REDUCTIONS
CURRENT	LY THE FAC	CILITY DOES	NOT HA	VE MATASYS C	ONTROL	CAPABILIT	Y FOR THE A	AIR HANDLI	ERS REFERENCED.
REDUCTION	ON OF THE	TOTAL FAI	N FLOW A	LSO REQUIRE	D ADJUSTI	MENT OF	THE OUTSID	E AIR FLOV	V DAMPER SYSTEM
	TO MAINT	TAIN ADEQU	JATE OUT	SIDE AIR WITH	A VARIAB	LE SUPPLY	Y FLOW, THIS	S IS POSSIB	LE WITH DDC
	CONTROL	BUT DIFFIC	CULT IF PR	OBLEMATIC T	O ACCOM	IPLISH WIT	TH PNEUMA	TIC CONTR	OL.
	EXISTING				PROPOSE	D			
AIR HANDLERS	4				4				
MOTOR H.P	7.5				7.5				
MNOR EFF	0.85				0.85				
POWER FACTOR	8				0.8				
RATED POWER	6.58235				0.0				
ICATED TOWER	EXISTING								
EFFECTIVE /EQUIVA									
OPERATING LOAD	90%				0.6				
OI LIVATING LOAD	7076				0.8				
EST OPERATING LO	5.92	K/W			0.5				
EST OPERATING LO	1		KW		1.97	KW		2.1	KW
EST ANNUAL OPER		3500			1.77	INVV		3.1	KVV
HOURS	ATTINO	3300							
EST ANNUAL ENER	CV INIDI IT	82938			27646			55292	
EST EFFECTIVE ENE					2/040			33272	
L31 LITECTIVE EINE		\$ 5,391			\$ 1,797			\$ 3.594	
MO DEMAND RAT		\$ 11.00			\$ 1,797			Ф 3,374	
MO COINCIDENCE	_	0.75			0.85				
)EMAND	\$ 586.49			\$221.56			\$ 365	
ESTIMATED ANN. [DIST DEMAND	PEIVIAIND	\$ 586.49 1.25			1.25			a 305	
DIST DEMAND EST ANN DIST. DEM	IAND				\$ 178			\$ 142	
EST ANN DIST. DEW EST COINC	IANU	\$ 320 0.9			\$ 1/8 1.5			D 142	
		0.9			1.5			¢ / 101	
TOTAL POWER AND								\$ 4,101	
ENERGY REDUCTIO		D CONTRO	C CNITC	A FUNCTION	NC DDC 1	VCTELA E	OD THE AIR	LIANDI EDO	
COST TO IMPLEME	NI VES ANI	CONTRO	LS ONTO		ING DDC S	YSIEM F	OK THE AIR	HANDLERS	
CILAR: 5.5	A) (D A C) (\$12,000.00	VE A DC				
SIMPLE PA	AYBACK			2.9	YEARS				

Annex 9. Repairing Trane UniVents, Data, Assumptions and Analysis.

SCHOOL	ENERGY A	SSESSMEN	JT		R DREVLOW			
	FACILITY		DRUMMON	ID K12		13-May		
ENERGY F	REDUCTIO	N OPPORT	UNITY					
MULTIPLE	CLASSRO	OMS ARE S	SERVED BY	TRANE UN	IVENTS .			
THE UNIVENTS ARE DESCRIBED AS HAVING VARIABLE SPEED FAN MOTORS.								
IT IS ALSO	REPORTE	D THAT A	NUMBER O	F THE UNI	TS NO LONGE	R OPERATE	AS	
VARIABLE	SPEED UN	IITS AND	ARE EITHER	FULL SPEE	D ON OR OF	f. OPERATIN	IG	
AT FULL S	PEED AND	CYCLING	S IS LESS EF	FICIENT TH	HAN OPERATII	NG IN A		
MODULA	TING FASH	ION.						
FULL SPE	ED OPERA	TION WILL	ONLY BE R	EQUIRED I	N WARMUP N	MODE AND		
MAX COC	DLING PERI	ODS.						
	MOTORS							
	TYPE		VARIABLE S	SPEED				
	NUMBER		12					
	HP.		0.5					
	EFF		0.8					
	FULL SPD		0.46625	KW				
	POWER II	V						
	COINCIDE	ENCE	0.6					
	FACTOR							
	EST COIN	CIDENT	3.357	KW				
	LOAD							
	ANNUAL OPERATING			2500				
	HOURS							
	EST ANNUAL ENERGY			8393	KWH			
	EFF ENERGY RATE			\$ 0.066				
	EST ANNUAL ENERGY EXPENSE				\$ 554			
	MO DEMAND RATE			\$ 11.00	· · · · · · · · · · · · · · · · · · ·			
	DEMAND COINCIDENCE			0.7				
	EST ANNUAL DEMAND			\$310.19				
	DIST DEMAND RATE			\$ 1.25				
	COINCIDENCE EST ANNUAL DIST DEMAND			0.8				
				0.0	\$ 40			
				Y EXPENS	•	\$ 904		
	EST TOTAL POWER AND ENERGY EXPENSE ESTIMATED POWER AND ENERGY REDUCTION POTE					• • • •		
			ATING FAN			50%		
				J. LIVATIO		\$ 452.19		
	EST EXPENSE TO REPAIR						PER UNIT	
	EST TOTAL REPAIR COST					\$ 6,000.00	. LICOIVII	
	SIMPLE PAYBACK					13.3		YEARS
	SHVII LL IF	N DACK				10.0		, LANS