DRAFT

DRUMMOND AREA SCHOOL DISTRICT

SCHOOL ENERGY AND DEMAND REDUCTION OPPORTUNITY ASSESSMENT

MAY 15, 2019

Mr. Robert Drevlow

FACILTIY: Drummond Area K-12 School

LOCATION: Drummond WI.

PURPOSE

Identify power and energy reductions that can reduce the school's utility bill and provide the basis for qualifying for a state sponsored" Energy Innovation Grant" that combines incentives for implementation of renewable energy sources with reductions in existing electricity use through improved equipment and operation.

PROCESS

A team representing the grant program consisting of Bill Bailey, Niels Wolter and myself met with Chris Vaillancourt, school facilities manager, toured the facility and discussed facility operations and observed existing spaces, equipment and significant energy using equipment and applications.

Bill Bailey provided general background of the solar component and background for the grant application, Niels Wolter explored and discussed potential mounting and interface opportunities for the solar application. I observed and commented on various energy application and energy reduction opportunities. Chris Vaillancourt provided information about the current facility conditions and current equipment and controls.

I reviewed the information acquired from the on-site assessment, made a preliminary assessment of items of interest and followed this with an additional meeting with Chris Vaillancourt to assess his and the perceived school district interests and limitations and to secure additional information needed to create useful decision-making models.

I prepared Xcel worksheet models to evaluate the energy and demand reduction potential, make recommendation for implementation and rudimentary simple payback period estimates.

Chris Vaillancourt provided a multiyear utility bill summary showing monthly and annual energy use, demand components and expenses. He also provided a total lamp count for several

major areas in the school, as well as other valuable information relative to equipment and operating practices.

APPLICATIONS REVIEWED

Opportunities for power and energy reductions in the following areas were explored.

- 1. Lighting
- 2. Heating system circulation pumps
- 3. Air handlers
- 4. Univents

It is noted that only electric energy reduction opportunities were reviewed but that significant fuel reduction opportunities also exist.

It is also noted that air conditioning equipment electricity reduction opportunities have not been evaluated at this time.

GENERAL INFORMATION

The facility is a K-12 school building constructed over many years with the most recent construction occurring in 1986, 1992 and 2000.

The facility's total area is approximately 100,000 square feet, is totally utilized and include 2 gyms, a large commons/cafeteria. Classrooms, mechanical skills workshop area, food service area and equipment rooms, administration offices and board room areas and various storage and mechanical equipment areas.

The facility is light and airy in most areas. The facility does not appear overcrowded, and appears well maintained.

The annual electric energy expense for the facility was \$47,343 for a 12-month period in 2018-2019 and the maximum peak monthly billing demand was 175kw. The annual energy consumption was 442,000 kwh. for the same period. The minimum monthly demand was 86 kW occurring in the summer, non-school session, period. The effective annual rate for all electric energy used is \$0.107 per kWh. The facility is served by Xcel Energy on a time of use rate structure.

The boiler and circulation pump systems are high performance and were very recently replaced.

The lighting system is T-8 lamp based throughout. The existing lamps and ballasts are reported to have been installed in 2010 but the troffers appear to date to the building's original construction dates.

Drummond Area School District Energy and Demand Reduction Opportunity Assessment

Control systems are limited. Direct Digital Control (DDC), i.e., Metasys control, is provided for the 2000 construction only and currently does not provide visual access to control graphics or control due to a software issue. This limitation is expected to be resolved by June 30, 2019. The older parts of the facility are served by pneumatic controlled air handlers and independently controlled univents.

Food service exhaust fans exist but are reported to be used minimally.

Computer and information technology exist but was not reviewed.

Exterior lighting was not reviewed.

SUMMARY OF ASESSMENTS

1. Lighting

Lighting is the facility's largest installed energy use application and therefore presents a significant energy and demand reduction opportunity if appropriate cost-effective measures can be identified and implemented.

Light energy reduction can be achieved in several ways.

- Light level reductions, including: delamping, low watt lamp and ballast replacement, and control
- Light hour use reductions
- More efficient lighting equipment, including lamp replacement and fixture replacement
- Combinations of the above

Light Level Reductions

It was noted in touring the facility that lighting levels (lumen values) varied significantly across the facility. Lighting levels appeared to vary for apparently similar applications at different locations in the school. This suggests that some of the areas are "over lit" and a reduction in light levels could be implemented to reduce energy, demand and expenses.

It was also observed that several instructors had taken steps to reduce the lighting levels in their classrooms by applying films over the lighting troffers to reduce the light levels to what they considered a more appropriate level.

It was also noted that various gym lighting levels were available through switching but hardly ever used by the staff. This suggests that light level reductions are desired and being achieved but the school is not gaining any corresponding reduction in energy use or cost.

Drummond Area School District Energy and Demand Reduction Opportunity Assessment

It is also noted that current instructional processes utilize personal computer screens and smartboards more and pages and paper less. Higher lighting levels result in higher glare levels for personal screen use and less contrast for smart boards and other front screen applications. Light level reductions may result in light levels more compatible for current instructional methods.

The T-8 troffers used throughout the classrooms, halls and large space areas are all lensed troffers. The current troffers observed appear to be troffers from the original construction dates but have been upgraded to T-8 lamps and electronic ballasts reported to be 2010.

Lighting control is limited to manual wall switching. Two switches exist in many classrooms and can switch 2 independent circuits but it does not appear that these are being applied in any consistent way to reduce energy and demand. it is also not known how the circuits allocate the light in the classrooms.

Light level reductions should be based on an evaluation of current and proposed light level requirements for the activity and or instruction occurring in the lighting zone. The overall aesthetic impact of the light levels and the desires of the primary occupants of the space also need to be considered. The probability of the space light level requirements changing over time due to activity, instructional or personnel changes also needs to be considered.

The primary tool in this process is a "light meter ", which measures the lumen /lux values at any point the light meter is held. This measures the input of all light sources. Thus, the impact of a reduction of a single light source may only result in a fractional reduction of the light total light level.

Light level recommendations are available from many sources including Focus on Energy, lighting providers, engineers etc. The final decision however needs to be made by the school administration based on their needs and desired final out comes.

There are several means of reducing light levels:

Delamping

Delamping is a low cost but effective means of reducing light output from a troffer or fixture to reduce power and energy requirements. Light power reduction by removing a lamp from a fixture will be generally proportional but somewhat less than the number of lamps removed to the total lamps in the troffer. E.g., removing 1 lamp from a 4-lamp troffer may result in a 20 % power and lighting reduction.

Removing a lamp from a fixture reduces the heat generated in the troffer and marginally increases lamp life of the remaining lamps thereby reducing the cooling load for the space and allowing the heating load to be supplied by a lower cost heat source.

Delamping results in a change in the appearance of the troffer lens itself. The light intensity will be reduced in the area the lamps were removed.

Lamp and troffers experience light depreciation with age i.e. light levels gradually decay. Lamp replacement of the remaining lamps and thorough cleaning of the troffer and lens will offset much of the light output reduction caused by the lamp removal.

Low Watt Lamp and Ballast Replacements

Reductions in power input and light output of a troffer can also be achieved by replacing the current lamps and or ballasts with available lower power and output replacements. 25-watt 4 ft florescent tubes are available to replacement existing 32- or 40-watt tubes. Low ballast factor ballasts are also available which cause a power and light reduction from the lamps served.

Although these opportunities exist for any area where light level reductions are considered appropriate, this measure has in general been superseded by conversion to L.E.D. lamps and or fixtures.

Controls

The time-honored method for light reduction has been and remains "turning some of the light sources off". The historic manual methods of achieving this, however, have proven ineffective in many applications due to a lack of motivation, understanding or discipline of the appropriate "switch person".

Dimming is an effective light and power reduction technique but not easily implemented or cost effectively applied to T-8 florescent lamps (the current lighting system in this facility). Dimming is however readily accomplished with many of the current L.E.D. (light emitting diode) lamps and troffers. Dimming can be implemented based on instructional needs, schedules, or total light levels in the space (e.g., responding to varying levels of window-sourced daylight).

Partial lamp shutdown techniques are available but relatively expensive to implement and require multiple circuits and switching or controls, which, as previously indicated, do not currently exist for the entire facility.

In general dimming is preferable to partial lamp switching as a light level reduction technique.

Light Hour Reductions

Light energy and expense are directly related to the operating time of the lamps. Occupancy controls can turn off lights in areas where no occupant need for light exists. Photo sensor controls allow entry ways, foyers and other areas experiencing significant daylight introduction through windows or skylights to turn off the interior lights at desired total light levels.

Drummond Area School District Energy and Demand Reduction Opportunity Assessment

Electronic time clocks or DDC system control can provide effective precise lighting applications and curtail light use when not required.

More Efficient Lighting Equipment

Recent technological improvements and manufacturing efficiencies have made L.E.D. lighting products cost effective upgrade opportunities for T-8 troffers. L.E.D. products have been used for many years for specialty applications including exit lighting, traffic lighting and signage.

More recently, however, the range of cost-effective applications for L.E.D. lighting products has expanded to include the general lighting applications for common school facility applications. The efficiency of the L.E.D. technology can be applied in several ways and provide some alternatives for reducing light power and energy.

Lamp Replacement

The current 4 ft T-8 lamps provide light output initially at approx. 90 lumens per watt. Over time this deteriorates by 20% to 30%. 4 ft. L.E.D. tubes are currently available that provide up to 2200 lumens at approximately 125 lumens per watt.

The light output of the L.E.D. tubes depreciates very little over the life of the tube and the tube life expectancy is much longer than a florescent lamp. This means that the light level remains more constant over the life of the lamp and less excess has to be applied initially to assure appropriate light levels at the end of lamp life. Thus, a lower initial light level can be applied which reduces power and energy for the entire lamp life.

The maximum light output from the 4 ft. L.E.D. tubes however is less than the initial output of approximately 2900 lumens from a new T-8 lamp and represents a significant reduction depending on the existing and proposed equipment and needs to be considered in the application.

Where the reduced light level is acceptable, this measure results in significant energy and power reductions and typically can be installed by in house staff.

The reduced power input to the L.E.D lamp also reduces the heat generated in the troffer which results in reduced cooling load for the space and reduced heating energy cost.

The L.E.D. lamps are available as dimmable units if controls are applied. The L.E.D. tubes are available in "bypass units" which allow removal of the existing ballast if desired or" direct connect" which retain the existing ballast.

Fixture Replacement

It has been noted that the majority of the facility lighting is lensed troffers. Lensed troffers of the era of the existing lighting had efficiencies of approx. 70% this means that approximately 30 % of the light generated by the lamps doesn't make it out of the troffer. This light loss also increases with time due to dirt accumulation and deterioration of the lens material.

Current troffer design without lenses achieve higher efficiencies by design. Use of lamps in the existing troffers means that light is equally radiated from all portions of the circular tube and a reflector is required to redirect the light radiated from the upper portions of the tube down into the lighting zone. This results in light loss and eventual light level depreciation. The L.E.D. tubes are directional and don't require reflectors to place the light output into the desired area. This allows a more efficient application than T-8 lamp type application. Reflectors are still provided however in many efficient fixtures to provide indirect lighting to reduce glare. Fixture selection needs to consider the application. The L.E.D. fixtures are also dimmable and controllable but require additional sensors and or controls.

Combination of the Above

It should seem obvious that the maximum demand and energy reduction potential would lie in a careful light reduction effort followed by or incorporated with implementation of more efficient and effective lighting apparatus responding to effective control mechanisms.

To that end the L.E.D. fixture applications with associated controls and applied to the considered appropriate light levels represents the maximum reduction opportunity consistent with adequate, appropriate and aesthetic light application.

Lighting Evaluation

In consideration of the previous discussion I prepared excel worksheets modeling the estimated impact of several of the scenarios described. The models represent the energy, demand and expense reductions likely to occur based on the lamps estimated operating hours, number of lamps, utility rates and estimated implementation expenses. All of the variables are available for revision by the facility management and the revised work sheets will show the impact of the revision. The number of lamps involved in all models is based on the current total lamps by area as provided by Chris Vaillancourt.

The following lighting models were developed:

Delamping: Removing lamps from areas that have higher than required or desired lighting levels throughout the facility. The major delamping is anticipated to occur in classrooms where shading is currently applied, hallways where activity-based lighting requirements are low and the elementary gym. Effective delamping requires that a light level assessment be made prior

to delamping. The only significant expense beyond in-house labor is lamp disposal for lamps physically removed from the troffers. Note: it is not necessary to remove either lamps from the troffers but is recommended.

Lamp replacement: Replacing current 32-watt t-8 lamps with L.E.D. tubes which fit easily into the existing troffers. Although this is expected to provide adequate and appropriate light levels throughout the premise in most applications, there may be some areas where the lighting targets are not met by the currently available L.E.D tubes and replacements will not be possible. The number of potential replacements will hinge on the light study. Thorough reflector and lens cleaning is recommended at this time.

Fixture replacement: Replacing existing troffers with high performance, dimmable L.E.D sourced indirect unlensed troffers. Again it is presumed that not all applications will allow simple replacement. Some applications may require higher output or additional troffers to achieve the lighting goals.

2. Heating System Circulation Pumps

The heating system hot water from the boilers is circulated throughout the facility by 2 ABB variable speed drive-controlled pumps. The pumps appear to be controlled by a differential pressure control at the system supply and return headers adjacent to the pumps. The pumps appear to be operating in a sequential scenario. As observed, the lead pump was running at a much higher speed than the secondary pump. I believe that the pumps were designed to provide redundant service which provides continuing operation upon failure of one of the pumps. This scenario however provides twice the design capacity required even during peak load periods.

The current operating scenario is expected to provide the pressure needed to supply any of the radiation devises on the system with adequate flow to achieve the rated heat output with essentially all of the radiation devises calling for rated heat output.

This control scenario provides more pressure and uses more power than required for most if not all of the operating hours due to the fact that the design loads typically are greater than any realized heating loads. A more effective control strategy would provide only the pressure required for the heating loads currently being experienced. There are several control options to consider. A frequently used option is to monitor and control the pressure required at the most remote radiation devise on the system. The laws of physics relating to pump operations (pump laws) indicate that operating 2 pumps in parallel results in lower total power requirements and less energy than a sequential operation as is currently in use. This scenario will be effective for the upper operating range of operations. An investigation is required to determine at which speed point the parallel operation should begin. At the lower load range, single pump operation at low speed will result in the lowest total power use

Additional pump power and reductions are available by adding an "unoccupied mode set back" control, and "warm weather shutdown "controls for both occupied and unoccupied mode operations. The "unoccupied mode setback" control recognizes that less pressure and flow are required for the reduced unoccupied period loads during, nights, weekends and holidays, and reduces the pressure setpoint and thereby the power and energy used.

The "warm weather shut down" control recognizes that at some temperature conditions, heating is no longer needed in the facility and shuts the pumps off. This control reduces the pumping requirements but also eliminates the flow of heated water throughout the system which provides inadvertent, and undesirable, heating of the facility. The Boiler system includes an option for warm weather shut down but is not currently operational. Boiler and pump system controls need to be coordinated but both can be effectively utilized.

Although providing the enhanced pump system controls may be accomplished independently at the VFD control. Providing the enhanced controls through the DDC control system will allow remote monitoring and a wider range of control operations and integrations with other operating systems. An Excel model was prepared for this opportunity.

3. Air Handlers

The largest air handler in the facility serves the auditorium. It is equipped with a cooling system.

The unit is reported to operate in a temperature maintenance mode for most of the year. The auditorium space is sparsely occupied for all school session days and only sees occupancy levels requiring full capacity operation during performances. It also has a summer operating requirement that includes cooling but again the space has low occupancy levels except for performance periods. These conditions are in many respects, similar to gym operations and can be effectively served by a "large space" control configuration that utilizes variable speed fan control to reduce fan power and energy for the low occupancy time periods while maintaining set point temp and adequate ventilation. The system can be operated as a single zone variable flow application. Continuous operation, eliminates the whine and associated strain on belts and bearings associated with startups and operates at a much lower and less objectionable noise level than full speed intermittent operation. The low speed continuous operation also allows more effective operation of the associated cooling system. This unit is currently controlled by the DDC system and would allow the addition of additional control features at minimum expense. An Excel model was prepared to analyze this opportunity.

4 small air handlers exist in the facility. They service several areas in the facility and are controlled by a Metasys pneumatic control system.

These units are not variable speed control. The units serve music rooms and a gym which are both characterized as "large spaces" having predominantly low occupancies with intermittent periods of higher occupancies. These air handlers will respond to variable speed operation and reduced power and energy use when equipped with variable speed drives and DDC control. An excel model was prepared for this opportunity.

4. Univents

Many of the classrooms have the heating, ventilation and air circulation needs served by Trane Univents.

These units are reported to have variable speed motors and originally were able to modulate fan speed in response to heat requirements. Over time a significant share of these units have lost modulating capacity and operate as on or off units only. Their continuous modulating speed operations will use less power and energy than intermittent full speed operation.

It is noted, that the current intermittent operation of the failing units does not meet the state code and ASHRAE recommendations for continuous ventilation in classroom spaces.

Although power and energy reductions are anticipated, with the restoration of the variable speed operating capability of all of the classroom units, restorating the continuous ventilation capability appears to be the more compelling motivation for implementing variable speed operation restoration to these units. An Excel model of this opportunity was prepared.

Results

Table 1. Summary of the Energy Efficiency Opportunities to Reduce Energy Costs at the Drummond School. Note that payback periods do not include available incentives (such as from Focus on Energy).

	Energy			Demand	Ν	Monthly	Distribution					Payback
	Savings	E	Energy	Reduction	D	Demand	Demand	Ar	nnual Bill		Cost of	Period
	(kWh)	Sa	vings (\$)	(kW)	Sa	avings (\$)	Savings (\$)	Sa	vings (\$)	Me	easure (\$)	(Years)
Lighting Options												
1. Delamping	38,468	\$	2,654	16	\$	1,925	\$ 231	\$	4,810	\$	269	0.06
2. LED Relamping	64,895	\$	4,475	29	\$	3,332	\$ 332	\$	8,139	\$	16,944	2.1
3. Troffer Replacement	94,282	\$	6,420	39	\$	4,572	\$ 531	\$	11,523	\$	61,596	5.4
Other Measures												
Auditorium Overhead Can LEDs	2,906	\$	191	3	\$	76	\$ 4	\$	273	\$	600	2.2
Auditorium Side Mount Flood LED Lamps	3,563	\$	235	2.4	\$	78	\$ 4.00	\$	317	\$	75	0.24
Hot Water Ciculation Pump Controls	28,846	\$	2,012	4	\$	552	\$ 89	\$	2,653	\$	5,000	1.9
Auditorium Air Handler	17,611	\$	1,189	7.5		223	45	\$	1,467	\$	7,000	4.8
Four Small Air Handler VFDS Control	4,197	\$	277	3	\$	155	\$ 20	\$	452	\$	6,000	13
Maximum Opportunity	151,405	\$	10,324	59				\$	16,685	\$	80,271	5
Includes the Troffer Replacement												
Annual Energy, Demand and Bill Savings	34%			34%					35%			
Based on 2018-2019 Billing												

All of the lighting opportunities modeled and evaluated appear to be effective in reducing power and energy and result in simple payback periods well within the life expectancy of the application. The troffer replacement option provides the most power and energy reduction opportunity but does not yield as early a payback as the other options given that extended equipment life and improved lighting environments are not considered.

The small air handler VFD and control measure does not appear to be available without an expansion of the DDC controls to include these units. The addition of the DDC control upgrade to this measure results in a very long payback period.

All of the additional opportunities evaluated also appear to be effective in reducing power and energy use in the facility and simple paybacks are within the life of the application with the exception of the Uninvent repair. However, as previously noted power and energy reduction should not be the primary motivation for implementing this opportunity.

The simple payback assessments do not recognize the value of extended system life or improved instructional environments. They do however provide a key element for more sophisticated evaluations which include unique school administrative inputs and perspectives.

The estimated power and energy reduction values of each measure modeled as well as the totals and associated paybacks are shown on a summary worksheet. The individual opportunity worksheets are also available for revision and confirmation of input parameters and

applications. It is noted that all cost information is based on estimates only and no "proposals" for any opportunity implementation were collected.

RECOMMENDATIONS

- Recommended Lighting Study: To achieve the maximum electric power and energy reduction possible, a lighting study is recommended to determine the desired but minimum acceptable light levels for all areas served by T-8 troffers followed by installation of high performance, indirect L.E.D. troffers with dimming control and associated controls appropriate for the application wherever possible.
- Recommended DDC Control Hot Water System: Implementation of DDC control for the hot water heating circulation pumps with application of parallel pump control, load reset warm weather shutdown and occupied, and unoccupied setback is recommended.
- Recommended DDC Control Auditorium: Installation of a variable speed drive and control for the auditorium and with DDC control application as a single zone variable air volume application.
- Recommended: Upgrading Pneumatic System Control for the 4 Small Air Handlers: Consider upgrading the pneumatic system control for the 4 small air handlers with the implementation of VFDs and associated large space management controls upon completion of the DDC improvements.
- Install a datalogger, like an eGauge, to monitor moment-by-moment electrical consumption. A basic unit would cost \$700-\$800 and a more detailed logger would add about \$35/current transformer. This data would be useful for future energy efficiency analysis and could be coupled with solar generation analysis. They are easily ordered online and installed by any electrician.

SCHOOL	LIGHTING	ASSESSM	ENT		R.A	.DREVLOW									
OPTION A	A	DELAMPIN	NG												
	REMOVE	ONE OR M	ORE T-8	4 FT LAMPS	FRON	1 EACH ELEC		NICALLY	Y BALL	ASTED					_
	2X2 TRO	FFER WHE	RE THE R	EDUCED LIG	iht le	EVEL IS DEEN	1ED D	ESIREA	BLE C			AND A	PPROF	PRIATE	
	FOR INST	RUCTION	AL, ACTIVI	TY AND AES	THET	IC REQUIRE	MENT	ſS.							
BENEFIT	A	POWER D	EMAND A	ND ENERGY	COS	T REDUCTIO	N								
	В	ACHIEVE I	DESIRED L	IGHT LEVEL	S CUR	RENTLY ACH	IIEVEI	D BY SH	ADIN	G OF TI	ROFFE	RS			
	С	TRANSFE	r assoc	IATED HEAT	ING T	O A LOWER	COST	FUEL							
	D	REDUCE	COOLING	LOAD WHE	EN CC	OLING IS DE	SIRE	D							
	E	ZERO INV	ESTMENT	EXPENSE IF	DON	E IN BY IN H	OUSE	STAFF							
	F	MARGINA	LLY IMPRO	OVES LUMIN	AIRE I	EFFICIENCY									
	G	PROCESS	CAN BE R	EVERSED AT	NO	EXPENSE IF A	APPLIC	CATION	IS CH	ANGE					
		OR LIGHT	ING TARG	ET CHANGE	S										
DOWN SI	DES														
	А	LESS POW	/ER AND [DEMAND RE	DUCT	ION POTENT	TAL T	HAN							
		OTHER OF	PTIONS												
	В	REDUCTIO	ON IN UN	IFORM LIGH	IT DI	STRIBUTION	FRON	1 TROFI	FERS						
	C.	NOT COM	IPATIBLE V	VITH DIMMI	NG O	PTIONS									

Annex 1. Delamping and Conversion of t-8 lamps to LED, Data, Assumptions and Analysis.

						BRARY	-	MUSIC		PSTAIRS	н	S GYM		
					C			TECH	0		11.	5. 01141		
JCHOOL WIDE							·		<u>ъ</u>		_		_	
	\					ALLWAIS					_		то	ТАІ
			LLL	507		050	>	8//		634		1/6	10	3180
		NI		20%		25%		10%		15%		0%	_	17%
				110		2/0	<mark>}</mark>	8/1		95		0/0		530
ΙΔM				30		240		30		30		30		557
TOT				3.6		7.2		2.5		2.9		0.0		16.2
				135.0		135.0)	135.0		135.0		135.0		135.0
% RF				3%		5%		2%		2%		0%		12%
FST				2200		2500	,)	2500		2200		3000	_	1270
OPE		;		2200		2000		2000		2200		0000	_	
FSTI		, 		7880.4		17981 25	-	6330		6276.6	_	0	- 3	8468 25
KWH	REDUCTION	.		,000.4		17701.20	·	0000		0270.0				0100.20
TOT	AL FACILITY KV	VH USE		450000		450000)	450000		450000		450000		450000
REDI	ICTION %	III OOL		1.8%		4 0%		1 4%		1 4%		0.0%		8.5%
CUR	RENT ON PEAK	[[\$	0.075	4	0.075	·	\$ 0.075	9	\$ 0.075	\$	0.075		0.070
KWH	RATE		Ψ	0.070	4	0.070		φ 0.070		0.070	•	0.070	_	
CUR		K	\$	0.045	\$	0.045		\$ 0.045	9	0.045	\$	0.045	_	
KWH	RATE		Ψ	0.010	4	0.010		\$ 0.0 10			•	0.010		
EST	ON PEAK USE			0.8		0.8		0.8		0.8		0.8		
EFFE	CTIVE RATE		\$	0.07	\$	0.07		\$ 0.07	9	5 0.07	\$	0.07		
ESTA		GY	\$	543.75	\$	1.240.71		\$436.77	9	\$433.09	\$	-	\$2	2.654.31
COS			-					• • • • • • • •						,
CUR	RENT MO DEM	AND	\$	11.00	\$	11.00		\$ 11.00	9	<u>5 11.00</u>	\$	11.00	_	
RATE	PER KWPER N	10							_		-		_	
EST				0.9		0.9	,	0.9		0.9		0.9	_	
COIN	ICIDENCE FAC	TOR											_	
EST	ANNUAL DEMA	AND	\$	428	\$	855		\$ 297	9	345	\$	-	\$	1,925
CHA	RGE REDUCTIC	DN	· ·											
DIST	DEMAND			0.95		0.95		0.95		0.95		0.95		
COIN	ICIDENCE													
CUR	RENT DIST DEM	IAND		1.25		1.25		1.25		1.25		1.25		
RATE	(PER KWPER N	1O)											_	
EST	ANNUAL DIST		\$	51	\$	103		\$ 36	9	5 41	\$	-	\$	231
DEM	AND CHARGE	REDUCTIO	N											
EST	TOTAL POWER	AND	\$	1,023	\$	2,199		\$ 769	9	5 819	\$	-	\$	4,810
ENE	RGY EXPENSE F	REDUCTION	N											
EST	AMP DISPOSA	L	\$	0.50	\$	0.50		\$ 0.50	9	0.50	\$	0.50	_	
EXPE	NSE PER LAMP	D .											_	
EST	TOTAL DISP[OS	AL	\$	59.50	\$	120.00		\$ 42.00	9	\$ 47.50	\$	-	\$	269.00
EXPE	NSE													
EST	SIMPLE PAYBAC	СК		0.06		0.05		0.05		0.06	#	DIV/0!		0.06
OF E	XPENSE													
		1	-				-				_			

SCHOOL LIGH	GHTING ASSESSMENT R.A.DREVLOW	
OPTION A	RELAMP WITH 4 FT HIGH PERFORMANCE, HIGH C	DUTPUT LED LAMPS
REP	PLACE EXISTING T-8 LAMPS ADEQUATE FOR THE LIGHTIN	IG REQUIREMENTS OF THE
ARE	REA WITH 4 FT LED TUBES.	
BENEFIT A	ACHIEVES POWER AND ENERGY REDUCTION FOR	R THE ENTIRE FIXTURE LOAD
В	ACHIEVE DESIRED LIGHT LEVELS CURRENTLY ACH	IEVED BY SHADING OF TROFFERS
С	TRANSFER ASSOCIATED HEATING TO A LOWER	COST FUEL
D	REDUCE COOLING LOAD WHEN COOLING I, MC	ORE THAN DELAMPING
E	MODEST INVESTMENT EXPENSE IF DONE BY IN H	IOUSE STAFF
F	MARGINALLY IMPROVES LUMINAIRE EFFICIENCY	
G	ADDITIONAL LAMPS CAN BE ADDED IF FULL COM	IPLEMENT WAS NOT
	INITIALLY APPLIED OR ZONE USE CHANGES .	
Н	LAMPS CAN BE REMOVED IF LIGHT LEVEL IS DEEN	MED EXCESSIVE
I	LED TUBES MAY BE DIMMABLE FOR ADDITIONAL	CONTROL
J.	VERY LONG LAMP AND TROFFER LIFE EXTENSION	١.
DOWN SIDES	S S	
A	LUMEN DEPRECIATION OF AGED REFLECTORS A	ND LENSES REMAIN
В	REDUCTION IN UNIFORM LIGHT DISTRIBUTION	FROM TROFFERS
	WILL BE INCURRED IF LESS THAN FULL COMPLEM	IENT OF LAMPS IS USED

Annex 2. LED Relamping Data, Assumptions and Analysis.

						LIBRA	RY	M	USIC	UP	STAIRS	Н.9	S. GYM	
SCHOO	L WIDE LAMP TO	DTAL				CAFE	TERIA	TE	CH					
						HALL	WAYS	M	IDDLE SC	:H				
	AREA			ELE	MENTARY	ETC		HA	ALLWAYS					TOTAL
	LAMPS				597		959		844		634		146	31
	LAMP CONVE	RSION			80%		75%		80%		75%		50%	17
	LAN	MPS			478		719		675		476		73	
	EXISTING LAN	NP WAT	TS		30		30		30		30		30	
	PROPOSED LA	AMP WA	ATTS		18		18		18		18		18	
	REDUCTION (KWPERI	_AMP)		0.012		0.012		0.012		0.012		0.012	
	TOTAL KW RE	DUCTIC	N		5.7		8.6		8.1		5.7		0.876	
	AVE MO FACI	LITY DE	MAND		<mark>135.0</mark>		<mark>135.0</mark>		135.0		<mark>135.0</mark>		135.0	135
	% REDUCTION	N			4%		6%		6%		4%		1%	22
	EST. AVE ANN	IUAL			2200		2500		2500		2200		3000	
	OPERATING H	IOURS												
	ESTIMATED A	NNUAL			7880	2	21578		20256		12553		2628	648
	KWH REDUCT	ION												
	TOTAL FACILI	TY KWI	H USE		450000	4	50000		450000	4	450000	4	450000	4500
	REDUCTION 9	%			1.8%		4.8%		4.5%		2.8%		0.6%	14.4
	CURRENT ON	IPEAK K	WH RATE	\$	0.075	\$ (0.075	\$	0.075	\$	0.075	\$	0.075	
	CURRENT OF	FPEAK K		\$	0.045	\$ (0.045	\$	0.045	\$	0.045	\$	0.045	
	EST % ON PE	AK		Ť	80%		75%	- 1	75%		80%	-	80%	
	EST AVE EFFE		RATE	\$	0.069	\$ (0.068	\$	0.068	\$	0.069	\$	0.069	
	EST. ANNUAL	ENERG	Y COST	\$	544	\$.456	\$	1.367	\$	866	\$	181	\$ 4.41
	MO DEMAND	RATE		\$	11.00	\$ 1	1.00	\$	11.00	\$	11.00	\$	11.00	
	PER KWPER M	10						-		-		-		
	MONTHLY CC		NCE		0.9		0.9		0.8		0.9		0.8	
	FACTOR													
	MO DIST RATI	F		\$	1.25	\$	1.25	\$	1.25	\$	1.25	\$	1.25	
	PER KWPER M	10		•				- -		-		-		
	MO COINCID	ENCE			0.9		0.9		0.9		0.9		0.9	
	FACTOR													
	ESTANNUAL	MO. DE	MAND	\$	681	\$ *	1.025	\$	856	\$	678	\$	93	\$ 3.33
	EST.ANNUAL	DIST DE	MAND	\$	77.37	\$ 1'	6.52	\$	109.38	\$	77.03	\$	11.83	\$ 392.1
	EST TOTAL PO	OWER A	ND	\$	1.302	\$ 2	2.598	\$	2.332	\$	1.621	\$	286	\$ 8.13
	ENERGY COS	ST		-	.,				_,		.,			
	EST. PER LAM	P COST		\$	6.00	\$	6.00	\$	6.00	\$	6.00	\$	6.00	
	EST TOTAL LA	MP EXF	PENSE	\$	2.866	\$ 4	1.316	\$	4.051	\$	2.853	\$	438	\$ 14.52
	EST LAMP AN		AST	\$	1 00	\$	1 00	\$	1.00	\$	1 00	\$	1.00	+
		P.PFR I 4	MP	¥	1.00	Ŧ		Ψ	1.00	Ψ	1.00	•	1.00	
		ISPOSA		\$	478	\$	719	\$	675	\$	476	\$	73	\$ 243
	FXPENSE	.5. 554	-	~		*		4	0/0	•		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ψ 2,74
	EST TOTAL F	XPENSE		\$	3 343	\$ 1	5 035	\$	4 7 2 6	\$	3 329	\$	511	\$ 16 94
			YBACK	Ψ	2.6	Ψ.	1 9	Ψ	2.0	Ψ	21	Ψ	1.8	φ 10,74
					2.0		1.7	_	2.0	_	2.1	_	1.0	4

Annex 3. Troffer Replacement Data, Assumptions and Analysis.

SCHOOL LIGHTING	G ASSESSMENT R.A.DREVLOW
OPTION A	REPLACE EXISTING TROFFERS WITH HI PERFORMANCE INDIRECT HIGH OUTPUT TROFFERS.
BENEFIT A	ACHIEVES POWER AND ENERGY REDUCTION FOR THE ENTIRE FIXTURE LOAD
В	ACHIEVE DESIRED LIGHT LEVELS CURRENTLY ACHIEVED BY SHADING OF TROFFERS
C	TRANSFER ASSOCIATED HEATING TO A LOWER COST FUEL
D	REDUCE COOLING LOAD WHEN COOLING IS, MORE THAN DELAMPING
E	MODEST INVESTMENT EXPENSE IF DONE BY IN HOUSE STAFF
F	MARGINALLY IMPROVES LUMINAIRE EFFICIENCY
G	ADDITIONAL LAMPS CAN BE ADDED IF FULL COMPLEMENT WAS NOT
	INITIALLY APPLIED OR ZONE USE CHANGES .
Н	LAMPS CAN BE REMOVED IF LIGHT LEVEL IS DEEMED EXCESSIVE
I	LED TUBES MAY BE DIMMABLE FOR ADDITIONAL CONTROL
J.	VERY LONG LAMP AND TROFFER LIFE EXTENSION.
DOWN SIDES	
A	LUMEN DEPRECIATION OF AGED REFLECTORS AND LENSES REMAIN
В	REDUCTION IN UNIFORM LIGHT DISTRIBUTION FROM TROFFERS
	WILL BE INCURRED IF LESS THAN FULL COMPLEMENT OF LAMPS IS USED

SCHOOL WIDE LAMP TOTAL CAFETERIA TECH TECH TECH TECH TOTAL AREA ELEMENTARY HALLWAYS MIDDLE SCH HALLWAYS TOTAL LAMPS 597 959 844 634 146 3180 LAMP CONVERSION 80% 75% 80% 75% 50% 17% TROFFERS 119 180 169 119 18 120 1						L	IBRARY	М	USIC	UP	STAIRS	Н.5	S. GYM		
AREA ELEMENTARY MIDDLE SCH I TOTAL LAMPS 597 959 844 634 146 3180 LAMP CONVERSION 80% 75% 80% 75% 50% 119 TROFFERS 119 180 169 119 18 119 EXISTING TROFFER WATTS 5 55 55 55 55 REDUCTION (KWPERLAMP) 0.065 0.065 0.065 0.065 0.065 0.065 TOTAL KW REDUCTION 7.8 11.7 11.0 7.7 1.2 39 AVE MO FACILITY DEMAND 135.0 135.0 135.0 135.0 135.0 135.0 ESTIMICH ONNG 6% 9% 8% 6% 1% 29% ESTIMATED ANNUAL 2200 2200 2200 3000 450000 REDUCTION 6.5% 6.1% 3.8% 0.8% 9.04% 2.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045	SCHOOL WIDE LA					0	CAFETERIA	TE	CH						
AREA ELEMENTARY ETC HALLWAYS TOTAL LAMPS 597 959 844 634 146 3180 LAMP CONVERSION 80% 75% 80% 75% 50% 17% TROFFERS 119 180 169 119 18 120						F	ALLWAYS	M	DDLE SC	ЭН		_			
LAMPS 597 959 844 634 146 3180 LAMP CONVERSION 80% 75% 80% 75% 50% 17% TROFFERS 119 180 169 119 18 119 18 EXISTING TROFFER WATTS 55 <td>AREA</td> <td></td> <td></td> <td>ELI</td> <td>EMENTAR</td> <td>ry e</td> <td>TC</td> <td>HA</td> <td>ALLWAYS</td> <td></td> <td></td> <td>_</td> <td></td> <td>то</td> <td>TAL</td>	AREA			ELI	EMENTAR	ry e	TC	HA	ALLWAYS			_		то	TAL
LAMP CONVERSION 80% 75% 80% 75% 50% 11% TROFFERS 119 180 169 119 18 EXISTING TROFFER WATTS 120 120 120 120 120 PROPOSED TROFFER WATTS 55 55 55 55 55 REDUCTION (KWPERLAMP) 0.065 0.065 0.065 0.065 0.065 TOTAL KW REDUCTION 7.8 11.7 11.0 7.7 1.2 39 AVE MO FACILITY DEMAND 135.0	LAMPS				597		959		844		634		146		3180
TROFFERS 119 119 119 119 119 119 119 110 EXISTING TROFFER WATTS 120 135.0 1	LAMP C	ONVERSION	J		80%		75%		80%		75%		50%	_	17%
EXISTING TROFFER WATTS 120 120 120 120 120 120 PROPOSED TROFFER WATTS 55 55 55 55 55 55 55 REDUCTION (KWPERLAMP) 0.065 0.065 0.065 0.065 0.065 0.065 TOTAL KW REDUCTION 7.8 11.7 11.0 7.7 1.2 39 AVE MO FACILITY DEMAND 135.0 135.0 135.0 135.0 135.0 135.0 135.0 % REDUCTION 6% 9% 8% 6% 1% 29% EST AVE ANNUAL 2200 2200 2200 2200 3000 450000 OPERATING HOURS	TROFFE	RS	-		119		180		169		119		18	_	
PROPOSED TROFFER WATTS 55 55 55 55 55 55 55 REDUCTION (KWPERLAMP) 0.065 0.066 0.065 0.066 0.066 0.060 450000 6.075 </td <td>EXISTIN</td> <td>G TROFFER</td> <td>WATTS</td> <td></td> <td>120</td> <td></td> <td>120</td> <td></td> <td>120</td> <td></td> <td>120</td> <td></td> <td>120</td> <td></td> <td></td>	EXISTIN	G TROFFER	WATTS		120		120		120		120		120		
REDUCTION (KWPERLAMP) 0.065 0.065 0.065 0.065 0.065 0.065 0.065 TOTAL KW REDUCTION 7.8 11.7 11.0 7.7 1.2 39 AVE MO FACILITY DEMAND 135.0 135.0 135.0 135.0 135.0 135.0 135.0 % REDUCTION 6% 9% 8% 6% 1% 29% EST. AVE ANNUAL 2200 2500 2200 3000 3000 16999 3559 94282 KWH REDUCTION 17074 29220 27430 16999 3559 94282 KWH REDUCTION 17074 29220 27430 16999 3559 94282 KWH REDUCTION 3.8% 6.5% 6.1% 3.8% 0.075 \$ 0.075 <td< td=""><td>PROPOS</td><td>ED TROFFE</td><td>R WATTS</td><td></td><td>55</td><td></td><td>55</td><td></td><td>55</td><td>_</td><td>55</td><td>_</td><td>55</td><td></td><td></td></td<>	PROPOS	ED TROFFE	R WATTS		55		55		55	_	55	_	55		
TOTAL KW REDUCTION 7.8 11.7 11.0 7.7 1.2 39 AVE MO FACILITY DEMAND 135.0 136	REDUCT	ION (KWPE	RLAMP)		0.065		0.065		0.065	_	0.065	_	0.065		
AVE MO FACILITY DEMAND 135.0 135	TOTAL #	W REDUCT	ION ,		7.8		11.7	-	11.0		7.7		1.2	-	39
% REDUCTION 6% 9% 8% 6% 1% 29% EST. AVE ANNUAL 2200 2500 2500 2200 3000	AVE MO	FACILITY D	EMAND		135.0		135.0		135.0		135.0		135.0		135.0
EST. AVE ANNUAL 2200 2200 2200 3000 OPERATING HOURS 17074 29220 27430 16999 3559 94282 KWH REDUCTION 450000 450000 450000 450000 450000 450000 450000 REDUCTION % 3.8% 6.5% 6.5% 5.0.075 \$ 0.075 \$ 0.075 \$ 0.075 \$ 0.075 \$ 0.075 \$ 0.045	% REDU	CTION			6%		9%		8%		6%		1%		29%
OPERATING HOURS Image: Stimated annual Estimated annual for the state of the state	EST. AVE	ANNUAL			2200		2500		2500		2200		3000		
ESTIMATED ANNUAL 17074 29220 27430 16999 3559 94282 KWH REDUCTION	OPERAT	ING HOURS	;												
KWH REDUCTION Image: standard	ESTIMA	ED ANNUA	L		17074		29220		27430		16999		3559	-	94282
TOTAL FACILITY KWH USE 450000 450000 450000 450000 450000 450000 REDUCTION % 3.8% 6.5% 6.1% 3.8% 0.8% 21.0% CURRENT ONPEAK KWH RATE \$ 0.075 \$ 0.045 \$ 0.069 \$ 0.045 <td>KWH RE</td> <td>DUCTION</td> <td></td>	KWH RE	DUCTION													
REDUCTION % 3.8% 6.5% 6.1% 3.8% 0.8% 21.0% CURRENT ONPEAK KWH RATE \$ 0.075 \$ 0.045	TOTAL F	ACILITY KV	VH USE		450000		450000		450000		450000	-	450000		450000
CURRENT ONPEAK KWH RATE \$ 0.075 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.045 \$ 0.067 <t< td=""><td>REDUCT</td><td>ION %</td><td></td><td></td><td>3.8%</td><td></td><td>6.5%</td><td></td><td>6.1%</td><td></td><td>3.8%</td><td></td><td>0.8%</td><td>- -</td><td>21.0%</td></t<>	REDUCT	ION %			3.8%		6.5%		6.1%		3.8%		0.8%	- -	21.0%
CURRENT OFFPEAK KWH RATE \$ 0.045 <	CURREN	T ONPEAK	KWH RATE	\$	0.075		\$ 0.075	\$	0.075	\$	0.075	\$	0.075		
EST % ON PEAK 80% 75% 75% 80% 80% EST AVE EFFECTIVE RATE \$ 0.069 \$ 0.068 \$ 0.068 \$ 0.069 \$ 0.069 \$ 0.069 EST. ANNUAL ENERGY COST \$ 1,178 \$ 1,972 \$ 1,852 \$ 1,173 \$ 246 \$ 6,420 MO DEMAND RATE \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 PER KWPER MO	CURREN	T OFFPEAK	KWH RATE	\$	0.045		\$ 0.045	\$	0.045	\$	0.045	\$	0.045		
EST AVE EFFECTIVE RATE \$ 0.069 \$ 0.068 \$ 0.068 \$ 0.069 \$ 0.069 \$ 0.069 EST. ANNUAL ENERGY COST \$ 1,178 \$ 1,972 \$ 1,852 \$ 1,173 \$ 246 \$ 6,420 MO DEMAND RATE \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 \$ 11.00 PER KWPER MO MONTHLY COINCIDINCE 0.9 0.9 0.8 0.9 0.8 MO DIST RATE \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 PER KWPER MO MO COINCIDENCE 0.9 0.9 0.9 0.9 0.8 0.9 0.8 MO COINCIDENCE 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 MO COINCIDENCE 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.25 \$ 1.25 <td>EST % C</td> <td>N PEAK</td> <td></td> <td></td> <td>80%</td> <td></td> <td>75%</td> <td></td> <td>75%</td> <td></td> <td>80%</td> <td></td> <td>80%</td> <td></td> <td></td>	EST % C	N PEAK			80%		75%		75%		80%		80%		
EST. ANNUAL ENERGY COST \$ 1,178 \$ 1,972 \$ 1,852 \$ 1,173 \$ 246 \$ 6,420 MO DEMAND RATE \$ 11.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 \$ 10.00 <	EST AVE	EFFECTIVE	RATE	\$	0.069		\$ 0.068	\$	0.068	\$	0.069	\$	0.069		
MO DEMAND RATE \$ 11.00 \$ 10.00	EST. AN	NUAL ENER	GY COST	\$	1,178		\$ 1,972	\$	1,852	\$	1,173	\$	246	\$	6,420
PER KWPER MO MONTHLY COINCIDINCE 0.9 0.9 0.8 0.9	MO DEM	IAND RATE		\$	11.00		\$ 11.00	\$	11.00	\$	11.00	\$	11.00		
MONTHLY COINCIDINCE 0.9 0.9 0.8 0.9 0.8 0.9 0.8 FACTOR MO DIST RATE \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 MO DIST RATE \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 \$ 1.25 PER KWPER MO MO COINCIDENCE 0.9 0.9 0.9 0.9 0.9 0.9 0.9 MO COINCIDENCE 0.9	PER KW	PER MO													
FACTOR MO DIST RATE \$ 1.25<	MONTH	LY COINCID	INCE		0.9		0.9		0.8		0.9		0.8		
MO DIST RATE \$ 1.25<	FACTOR														
PER KWPER MO MO COINCIDENCE 0.9	MO DIS	RATE		\$	1.25		\$ 1.25	\$	1.25	\$	1.25	\$	1.25		
MO COINCIDENCE 0.9 0.9 0.9 0.9 0.9 0.9 FACTOR FACT	PER KW	PER MO													
FACTOR Image: Stannual model of the standard st	MO COI	NCIDENCE			0.9		0.9		0.9		0.9		0.9		
EST.ANNUAL MO. DEMAND \$ 922 \$ 1,389 \$ 1,159 \$ 918 \$ 125 \$ 4,512 EST.ANNUAL DIST DEMAND \$ 104.77 \$ 157.79 \$ 148.12 \$ 104.31 \$ 16.01 \$ 531 EST.ANNUAL DIST DEMAND \$ 2,205 \$ 3,519 \$ 3,158 \$ 2,195 \$ 387 \$ 11,464 ENERGY COST EST. PER TROFFER COST \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST TOTAL TROFFER EXPENSE \$ 11,940 \$ 17,981 \$ 16,880 \$ 11,888 \$ 1,825 \$ 60,514	FACTOR														
EST.ANNUAL DIST DEMAND \$ 104.77 \$ 157.79 \$ 148.12 \$ 104.31 \$ 16.01 \$ 531 EST.TOTAL POWER AND \$ 2,205 \$ 3,519 \$ 3,158 \$ 2,195 \$ 387 \$ 11,464 ENERGY COST 5 5 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST. PER TROFFER COST \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST.TOTAL TROFFER EXPENSE \$ 11,940 \$ 17,981 \$ 16,880 \$ 11,888 \$ 1,825 \$ 60,514	EST.ANN	IUAL MO. D	EMAND	\$	922		\$ 1,389 🕻	\$	1,159	\$	918	\$	125	\$	4,512
EST TOTAL POWER AND \$ 2,205 \$ 3,519 \$ 3,158 \$ 2,195 \$ 387 \$ 11,464 ENERGY COST 5 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST TOTAL TROFFER COST \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST TOTAL TROFFER EXPENSE \$ 11,940 \$ 17,981 \$ 16,880 \$ 11,888 \$ 1,825 \$ 60,514	EST.ANN	IUAL DIST D	EMAND	\$	104.77		\$ 157.79	\$	148.12	\$	104.31	\$	16.01	\$	531
ENERGY COST \$ 100.00	EST TOT	AL POWER	AND	\$	2,205		\$ 3,519	\$	3,158	\$	2,195	\$	387	\$1	1,464
EST. PER TROFFER COST \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 \$ 100.00 EST TOTAL TROFFER EXPENSE \$ 11,940 \$ 17,981 \$ 16,880 \$ 11,888 \$ 1,825 \$ 60,514	ENERGY	COST													
EST TOTAL TROFFER EXPENSE \$ 11,940 \$ 17,981 \$ 16,880 \$ 11,888 \$ 1,825 \$ 60,514	EST. PEF	TROFFER	COST	\$	100.00		\$ 100.00	\$	100.00	\$	100.00	\$	100.00		
	EST TOT	AL TROFFE	R EXPENSE	\$	11,940		\$ 17,981 🎽	\$	16,880	\$	11,888	\$	1,825	\$	60,514
EST. LAMP AND BALLAST \$ 5.00 \$ 1.00 \$ 1.00 \$ 1.00 \$ 1.00	EST. LAN	1P AND BAL	LAST	\$	5.00		\$ 1.00	\$	1.00	\$	1.00	\$	1.00		
DISPOSAL EXP.PER LAMP	DISPOS	AL EXP.PER I	_AMP												
EST.TOTAL DISPOSAL \$ 597 \$ 180 \$ 169 \$ 119 \$ 18 \$ 1,083	EST.TOT	AL DISPOS	AL	\$	597		\$ 180	\$	169	\$	119	\$	18	\$	1,083
EXPENSE	EXPENS	E										1			
EST. TOTAL EXPENSE \$ 12,537 \$ 18,161 \$ 17,049 \$ 12,006 \$ 1,843 \$ \$ 61,596	EST. TO	AL EXPENS	Ē	\$	12,537		\$ 18,161	\$	17,049	\$	12,006	\$	1,843	\$ (51,596
ESTIMATE SIMPLE PAYBACK 5.7 5.2 5.4 5.5 4.8 5.4	ESTIMA	E SIMPLE P	AYBACK		5.7		5.2		5.4		5.5		4.8		5.4
EXPENSE ONLY (YEARS)	EXPENS	E ONLY (YEA	ARS)												

					_				÷.
SCHOOL LIGHT REDUCTION									
DRUMMOND K-12									
APPLICATION									
REPLACE 200 WATT INCANDE	SCENT DIN	/M/	٩BL	E CAN LI	GH	TS WITH E	QUIVALEN	IT OUTPUT	1
LED REFLECTOR FLOODS									
	EXISTING		LEC)		REDUCTIO	N		
LAMP WATTAGE	200			45		155			
# LAMPS	25			25					
TYPE	INC		LEC)					Τ
EST ANNUA LHRS	1000			1000		0			Τ
EST AVE USAGE	0.75			0.75					
EST AVE DEMAND	3.75			0.84		3			
EST ANNUAL KWH	3750			843.75		2906			
ON PEAK RATE	\$ 0.075		\$	0.075					
OFF PEAK RATE	\$ 0.045		\$	0.045					
ON PEAK %	70%			70%					
EFFECTIVE RATE	\$ 0.066		\$	0.066					
EST ANNUAL	\$247.50		\$	55.69		\$191.81			
ENERGY EXP									
MO DEMAND RATE	\$ 11.00		\$	11.00					
EST MO DEMAND	0.2			0.2					
COINCIDENCE									
EST ANNUAL	\$ 99.00		\$	22.28		\$ 76.73			
MO DEMAND CH.									
DIST DEMAND RATE	\$ 1.25		\$	1.25					
ANNUAL DIST	0.1			0.1					
DEMAND COIN.									
EST ANNUAL	\$ 5.63		\$	1.27		\$ 4.36			
DIST DEMAND									
EXPENSE									T
EST TOTAL POWER									
AND ENERGY	\$352.13		\$	79.23		\$ 273			
EXPENSE									
INVESTMENT PER L	AMP		\$	24.00					
TOTAL INVESTMEN	Г		\$	600.00					
SIMPLE PAYBACK	(YEARS)			2.2					
									-

Annex 4. Auditorium Overhead Can LED Lamps Data, Assumptions and Analysis.

SCHOOL	HOOL LIGHT REDUCTION DRUMMOND K-12											
	DRUMMO	ND K-12										
APPLICAT	ION											
REPLACE	200 WATT	100WATT WAT	ΓT F	LOOD	LA	MPS	(SIDE N	1C	DUNT) WITH E	QUIVALEN	T OUTPUT LED	С
FLOODS												
			EX	ISTING		LED			REDUCTION			
	LAMP WA	TTAGE		100			15		85			
	# LAMPS			26			15					
	TYPE		IN	C		LED						
	EST ANNU	JA LHRS		1500			1500		0			
	EST AVE U	JSAGE		100%			100%					
	EST AVE	DEMAND		2.6			0.23		2.38			
	(KW											
	EST ANNU		3900			338		3563				
	ON PEAK	\$	0.075		\$	0.075						
	OFF PEAK	\$	0.045		\$	0.045						
	ON PEAK %			70%			70%					
	EFFECTIVE RATE			0.066		\$	0.066					
	EST ANNU	JAL	\$2	257.40		\$	22.28		\$ 235.13			
	ENERGY E	EXP										
	MO DEMA	AND RATE	\$	11.00		\$	11.00					
	EST MO D	DEMAND		0.25			0.25					
	COINCID	ENCE										
	EST ANNU	JAL	\$	85.80		\$	7.43		\$ 78.38			
	MO DEMA	AND CH.										
	DIST DEM	AND RATE	\$	1.25		\$	1.25					
	ANNUAL	DIST		0.1			0.1					
	DEMAND	COIN.										
	EST ANNU	JAL	\$	3.90		\$	0.34		\$ 3.56			
	DIST DEMAND											
	EXPENSE											
	EST TOTAL POWER											
	AND ENERGY			347.10		\$	30.04		\$ 317.06			
	EXPENSE											
	INVESTMENT PER LAMP					\$	5.00					
	TOTAL INVESTMENT					\$	75.00					
	SIMPLE PAYBACK			ARS)			0.2					

Annex 5. Auditorium Side Mount Flood LED Lamps Data, Assumptions and Analysis.

Annex 6. Hot Water Circulation Pump Controls, Data, Assumptions and Analysis.

DRUMMOND K12 MAY 2019 ADJUST HOT WATER HEATING CIRC PUMP CONTROL APPARS TO BE DIFFERENTIAL RESSURE AT HEAD END EXISTING CONTROL APPARS TO BE DIFFERENTIAL RESSURE AT HEAD END Image: Control Cont	SCH	OOL ENERGY ASSESSMI	ENT		RI	DREVLOW								++++	
ADJUST HOT WATER HEATING CIRC PUMP CONTROL EXISTING CONTROL APPCARS TO BE DIFFERENTIAL RESSURE AT HEAD END PROPOSED CONTROL REMOTE PRESIPUIS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PROPOSED CONTROL REMOTE PRESIPUIS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PUMPS 28 12 40 AMPS 28 12 40 15 15 NUMBER 1 2 2 1 2 2 AMPS 28 12 40 15 15 30 VOLTS 208 208 208 10807.68 1 1 ANNUAL CPERATING 0.9 0.0 4000 4000 4000 HOURS 5000 400 400 400 64 NANUAL EFFECTIVE 0.9 0.4 0.045 0.045 ON PEAK SHRORY RATE 0.045 0.045 0.045 ON PEAK SHRORY KATE 0.045 0.045 0.045		DRUMMOND K12		MAY		2019									
EXISTING CONTROL APEARS TO BE DIFFERENTIAL PRESSURE AT HEAD END PROPOSED CONTROL REMOTE PRESSPLUS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PROPOSED CONTROL REMOTE PRESSPLUS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PUMPS TOTAL NUMBER 1 2 2 AMPS 28 12 40 YOUTS 208 208 208 POWER 10.1 4.3 14.4 5403.84 ANNUAL OPERATING 5000 5000 4000 4000 ANNUAL EFFECTIVE 0.9 0.6 1007.5 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 ANNUAL SEFFECTIVE RATE 0.045 0.045 0.045 OP PEAK ENERGY RATE 0.046 \$ 0.045 ON PEAK ENERGY EARTE </td <td>AD.</td> <td>UST HOT WATER HEAT</td> <td>ING CIRC</td> <td>PUMP COI</td> <td>NTROI</td> <td></td>	AD.	UST HOT WATER HEAT	ING CIRC	PUMP COI	NTROI										
EXISTING CONTROL APPEARS TO BE DIFFERENTIAL PRESSURE AT HEAD END PROPOSED CONTROL REMOTE PRESPLUS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PUMPS TOTAL NUMBER 1 2 2 1 2 2 AMPS 288 12 40 15 15 30 VOLTS 208 200 208 208	1.00					·									
Biolono ostimular SEQUENTIALLY PROPOSED CONTROL REMOTE PREST PLUS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PROPOSED PUMPS TOTAL PROPOSED NUMBER 1 2 2 1 2 2 AMPS 28 12 40 15 50 0 VOITS 208 208 208 208 208 0 POWER 10.1 4.3 14.4 5403.84 30.4000 4000 HOURS 10.1 4.3 14.4 5403.84 10807.68 0 ANNUAL OPERATING 5000 5000 4000 4000 4000 4000 HOURS ANNUAL EFFECTIVE 0.7 0.6 0.40 0 0.075 ON PEAK ENERGY RATE 0.075 0.005 0.045 0.40 0.40 ON PEAK SHERGY RATE 0.045 0.045 0.045 0.42 0.40 0.40 0.40 0.40 0.40 0.40		EXISTING CONTROL			APPE	ARS TO BE		PRESSURE	AT H	FAD FND					
PROPOSED CONTROL REMOTE PRESIPLUS ON OCC AND UNOCC WWSD AND UNOCC SETBACK SYSTEM EXISTING PUMPS TOTAL PROPOSED NUMBER 1 2 2 2 1 2 2 AMPS 208 2012 2014 2014					SEOU	ENTIALLY	DITTERENTIA	. TREODORE							
Not Gale Control PROPOSED PROPOSED SYSTEM EXISTING PROPOSED 2 2 NUMBER 1 2 2 1 2 2 AMPS 28 12 40 15 15 30 VOLTS 208 208 208 10807.66 ANNUAL OPERATING 5000 5000 4					REMC	TE PRES			cc w			FTBACK			
SYSTEM EXISTING PUMPS TOTAL PROPOSED NUMBER 1 2 2 1 2 2 AMPS 28 12 40 15 15 30 VOLTS 208 208 208 208 208 208 POWER 10.1 4.3 14.4 5403.84 5403.84 10807.66 ANNUAL CPEATING 5000 5000 4000 4000 4000 4000 HOURS 0.9 0.6 1000 1000 1000 1000 ANNUAL EFFECTIVE 0.00 13.0 9 4.0 1000 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 1000 1000 ANNUAL KWH 64846 36000 0.075 0.075 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045					KEINC						0110000	LIBACK			
District Private Private TOTAL TOTAL TOTAL NUMBER 1 2 2 1 2 2 AMPS 28 12 40 15 15 30 15 15 30 VOLTS 208 208 208 208 10807.68 10807.68 10807.68 ANNUAL OPERATING 5000 5000 5000 4000 4000 4000 4000 ANNUAL EFFECTIVE 0.07 0.6 10807.68 10807.68 10807.68 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 400 10807.68 10807.68 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 400 10807.68 10.64 10.04<		SYSTEM	FXISTING	i											
NUMBER 1 2 2 1 2 2 1 2 2 AMPS 28 12 40 15 15 30		STOTEM	PLIMPS	• 	тс	ιΔτα									
AMPS 28 12 40 15 15 30 VOLTS 208		NUMBER	1	2		2	1	2		2					
VOUS 208 208 208 208 208 POWER 10.1 4.3 14.4 5403.84 5403.84 10807.68 ANNUAL OFERATING 5000 5000 4000 4000 4000 HOURS 5000 5000 4000 4000 4000 ANNUAL EFFECTIVE 0.9 0.6 1.0.0 1.0.0 1.0.0 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 4.0 ANNUAL KWH 64846 36000 0.075 0.075 OF PEAK ENERGY RATE 0.045 0.045 0.045 ON PEAK SWARTER VATE 0.046 \$ 2.012 \$ 2.012 MO DEMAND CH \$ 1.027 \$ 475.20 \$ 5.52 MO DIST, DEMAND CH \$ 1.25 \$ 1.25 \$ 5.20 EST ANNUAL ENERGY REDUCHON \$ 5.000			28	12	-	40	15	15	-	30					
NOLICIC No.		VOITS	208	208			208	208		00					
ONLIN OPERATING Store OPERATING Dotable ANNUAL OPERATING Store 4000 4000 4000 4000 HOURS ANNUAL EFFECTIVE 0.9 0.6 1 1 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 1 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 ANNUAL KWH 64846 36000 0.075 ON PEAK ENERGY RATE 0.045 0.045 ON PEAK S 5 0.60 EEFFECTIVE RATE 5 0.066 EFFECTIVE RATE 0.045 0.045 ON PEAK S 5 0.60 EEFFECTIVE RATE \$ 0.066 EFFECTIVE RATE \$ 0.066 COINCIDENCE FACTOR \$ 0.6 OD EMAND \$ 1.027 \$ 475.20 \$ 552 MO DEMAND CH \$ 1.027 \$ 475.20 \$ 522 1 ESTIMATED ANNUAL DEMAND CH \$ 1.25		POWER	10.1	4 3		14.4	5403.84	5403.84		10807 68					
MNDAL OF LOWING 2000 2000 1000 1000 MANUAL EFFECTIVE 0.9 0.6 1000 LOAD FACTOR 9 4.0 1000 ANNUAL EFFECTIVE LOAD 13.0 9 4.0 KW 64846 36000 0.075 ON PEAK ENERGY RATE 0.075 0.045 0.045 ON PEAK SUBJECTIVE RENERGY RATE 0.045 0.045 0.045 ON PEAK % 70% \$ 0.60 \$ 2,2660 SEST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,2660 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND 11 11 11 ANNUAL MO DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH \$ 1,25 \$ 1.25 \$ 1.25 EST ANNUAL DEMAND CH \$ 1,27 \$ 475.20 \$ 552 MO. DIST. DEMAND CH \$ 1.25 \$ 2.453 \$ 202.50 \$ 89 COINCIDENCE FACTOR 150% 150% \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 89 \$ 2,653 \$ 89			5000	5000		5000	4000	4000		4000					
ANNUAL EFFECTIVE 0.9 0.6 0.6 0.075 0			5000	5000		3000	4000	4000		4000					
ANNOAL EFFECTIVE LOAD IDENTIFY						0.0				0.6					
ANNUAL EFFECTIVE LOAD ANNUAL EFFECTIVE LOAD ANNUAL EFFECTIVE LOAD ANNUAL EFFECTIVE LOAD ANNUAL KWH 64846 3000 ON PEAK ENERGY RATE 0.045 ON PEAK S 0.						0.7				0.0					
ANNOAL EFFECTIVE LOAD 130 130 130 140 ANNUAL EFFECTIVE LOAD 130 140 140 ANNUAL KWH 64846 36000 0.075 ON PEAK ENERGY RATE 0.045 0.045 0.045 ON PEAK SENERGY RATE 0.045 0.045 0.045 ON PEAK WE RATE \$ 0.066 \$ 0.063 5 2,268.0 \$ 2,012 MO DEMANDL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 11 ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 11 ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 11 ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 11 ANNUAL ENERGY EXPENSE \$ 1,027 \$ 475.20 \$ 552 1555 1552						12.0				0			0		
NW ANNUAL KWH ANNUAL KUH ANNUAL K		ANNUAL EFFECTIVE L	OAD			13.0				9		4	.0		
ANNUAL KWH 64946 30000 ON PEAK ENERGY RATE 0.075 0.075 OFF PEAK ENERGY RATE 0.045 0.045 ON PEAK % 70% \$ 0.60 EEFFECTIVE RATE \$ 0.060 \$ 0.63 EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND 11 11 11 COINCIDENCE FACTOR 0.6 0.4 522 ST J. DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH \$ 1,25 \$ 1.25 \$ 1.25 EST. INST CHARGE 100 11 100 COINCIDENCE FACTOR 106 0.4 522 COINCIDENCE FACTOR \$ 201.81 \$ 202.50 \$ 89 COINCIDENCE FACTOR \$ 201.81 \$ 202.50 \$ 89 COINCIDENCE FACTOR \$ 5,000 \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 \$ 2,653 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. \$ 1.9 \$ 2,653 NOTES <						(40 4 (2/000					
ON PEAK ENERGY RATE 0.075 0.075 OFF PEAK % 70% 0.045 ON PEAK % 70% \$ 0.060 EEFFECTIVE RATE \$ 0.066 \$ 0.063 EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST . DEMAND CH. \$ 1,25 \$ 1.25 \$ 1.25 EST INST CHARGE 100% 110 110 COINCIDENCE FACTOR 0.6 0.4 100% COINCIDENCE FACTOR 10.6 0.4 100% COINCIDENCE FACTOR 10.6 0.4 100% COINCIDENCE FACTOR \$ 1.027 \$ 475.20 \$ 552 MO. DIST . DEMAND CH. \$ 1.027 \$ 475.20 \$ 552 COINCIDENCE FACTOR 150% 100% 100% COINCIDENCE FACTOR 10.05% 150% 100% COINCIDENCE FACTOR \$ 5,000 \$ 89 100% COINCIDENCE FACTOR \$ 5,000 \$ 89 100% COINCIDENCE FACTOR						04840				36000	0.075				
OHY FEAK SMERGY RATE 0.045 0.045 ON PEAK % 0.066 \$ 0.60 EEFFECTIVE RATE \$ 0.066 \$ 0.60 EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND 0.6 0.4 11 COINCIDENCE FACTOR 0.6 0.4 11 ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,25 \$ 1.25 \$ 125 EST. DIST CHARGE 100 100 100 COINCIDENCE FACTOR 150% 150% 552 COINCIDENCE FACTOR 150% \$ 202.50 \$ 89 COINCIDENCE FACTOR 150% \$ 202.50 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 \$ 2,653 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. 11 \$ 1.9 NOTES 1.9 1.9 1.9 1.9 NOTES 1.9 1.9 1.9 1.9 1.9 A 3 WAY VALVES BERESTANCE AND EXERVENTICE OVER THE FULL RANGE OF			E			0.075					0.075				
ON PEAR % 70% \$ 0.60 EEFFECTIVE RATE \$ 0.066 \$ 0.063 EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND 0 11 0 COINCIDENCE FACTOR 0.6 0.4 0 ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,027 \$ 475.20 \$ 552 COINCIDENCE FACTOR 10% 10% 10% EST ANNUAL DIST DEMAND CH \$ 291.81 \$ 202.50 \$ 89 TOTAL POWER AND ENERGY REDUCTION \$ 291.81 \$ 202.50 \$ 89 CONTOTAL POWER AND ENERGY REDUCTION \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 System CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. \$ 2,653 THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY. A 3 WAY VALVES IMTERDATE PRESSITANCE AND ELEVATES PRESSURE AND POWER AT LOW LOAD PERIODS.		OFF PEAK ENERGY RA	IE			0.045					0.045				
LEHFECTIVE NATE \$ 0.066 \$ 0.063 EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,268.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 ANNUAL MO DEMAND 0.6 0.4 COINCIDENCE FACTOR 0.6 0.4 ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,25 \$ 1.25 EST. DIST CHARGE 150% 150% COINCIDENCE FACTOR 150% \$ 202.50 \$ 89 COINCIDENCE FACTOR 150% \$ 202.50 \$ 89 COINCIDENCE FACTOR 150% \$ 202.50 \$ 89 COINCIDENCE FACTOR \$ 5,000 \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 \$ 2,653 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. \$ 2,653 \$ 2,653 THESE VALVES BREPASS FLOW ILE CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 2,453 YAY VALVES BRAPAS FLOW ILE CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 2,4653 YAY VALVES BRAPAS FLOW ILE CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 2,4653 YAY VALVES BRA		ON PEAK %				70%					\$ 0.60				
EST ANNUAL ENERGY EXPENSE \$ 4,280 \$ 2,288.0 \$ 2,012 MO DEMAND CH \$ 11.00 11 11 ANNUAL MO DEMAND 0.6 0.4 COINCIDENCE FACTOR 0.6 0.4 ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO, DIST. DEMAND CH. \$ 1,027 \$ 475.20 \$ 552 MO, DIST. DEMAND CH. \$ 1,25 \$ 1.25 1 COINCIDENCE FACTOR 150% 150% 1 COINCIDENCE FACTOR 150% 150% 1 COINCIDENCE FACTOR 150% 150% 1 COINCIDENCE FACTOR 150% 1 5 20.53 COST TO IMPLEMENT \$ 202.50 \$ 89 1 COST TO IMPLEMENT \$ 5,000 \$ 2,653 1 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. 1 1 1 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. 1 1 1 THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . 1 1 1 A- 3 WAY VALVES BRESPOND DIFFERENTLY TO CONTROL STRATEGY . 1 1 1		EEFFECTIVE RATE			\$	0.066					\$ 0.063				
MO DEMAND CH \$ 11.00 11 ANNUAL MO DEMAND Image: Conscience Factor 0.6 0.4 COINCIDENCE FACTOR 0.6 0.4 Image: Conscience Factor ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1,25 \$ 1,25 Image: Conscience Factor Image: Conscience Factor EST. DIST CHARGE Image: Conscience Factor 150% Image: Conscience Factor Image: Conscience Factor COINCIDENCE FACTOR 150% Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor COINCIDENCE FACTOR 150% Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor COINCIDENCE FACTOR Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor COST TO IMPLEMENT Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor Simple PayBack(YeaRs) Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor Image: Conscience Factor NOTES Image: Conscience Factor Image: Conscience Factor<		EST ANNUAL ENERGY	EXPENSE		\$	4,280			\$	2,268.0		\$ 2,01	2		
ANNUAL MO DEMAND COINCIDENCE FACTOR COINCIDENCE FACTOR COINCIDENCE FACTOR COINCIDENCE FACTOR S 1,027 S 475.20 S 552 MO. DIST . DEMAND CH S 1,027 S 475.20 S 552 MO. DIST . DEMAND CH S 1,027 S 475.20 S 552 COINCIDENCE FACTOR S 5 200 COINCIDENCE FACTOR S 2010 COINCIDENCE FACTOR S 202.50 S 8 9 COINCIDENCE FACTOR S 2,653 COST TO IMPLEMENT S S S 5,000 S S S 2,653 COST TO IMPLEMENT S CONTES S S S S S COST TO IMPLEMENT S CONTES S S S S S COST S S S S S S S S S S S S S S S S S S		MO DEMAND CH			\$	11.00				11					
COINCIDENCE FACTOR COINCIDENCE FACTOR COINCIDENCE FACTOR ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 5752 MO. DIST. DEMAND CH \$ 1,027 S 1.25 COINCIDENCE FACTOR COINCIDENCE FACTOR S 1.25 COINCIDENCE FACTOR S 202.50 \$ 89 COINCIDENCE FACTOR S 202.50 \$ 89 COINCIDENCE FACTOR S 2,653 COST TO IMPLEMENT S 5,000 SIMPLE PAYBACK(YEARS) 1.9 S 5,000 SIMPLE PAYBACK(YEARS) 1.9 S 5,000 SIMPLE PAYBACK(YEARS) 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY. A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES IMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 4 AT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3 LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REQUIRE FIND RESSURE		ANNUAL MO DEMAN	D												
ESTIMATED ANNUAL DEMAND CH \$ 1,027 \$ 475.20 \$ 552 MO. DIST. DEMAND CH. \$ 1.25 \$ 1.25 \$ 1.25 EST. DIST. CHARGE \$ 1.25 \$ 1.25 \$ 1.25 EST. DIST. CHARGE \$ 150% \$ 150% \$ 100% COINCIDENCE FACTOR \$ 291.81 \$ 202.50 \$ 89 TOTAL POWER AND ENERGY REDUCTION \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 SIMPLE PAYBACK(YEARS) 1.9 \$ 2,653 NOTES \$ 1.9 \$ 2,653 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. \$ 2,653 THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . \$ 1.9 A 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 202.50 2 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 2,653 2 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 202.50 2 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ 200.50 2 WAY VALVES DYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER REQUIREMENTS IN LOW LOAD PERIODS. \$ 200.50 4.1 TERNATIVES <td></td> <td>COINCIDENCE FACTO</td> <td>R</td> <td></td> <td></td> <td>0.6</td> <td></td> <td></td> <td></td> <td>0.4</td> <td></td> <td></td> <td></td> <td></td> <td></td>		COINCIDENCE FACTO	R			0.6				0.4					
MO. DIST. DEMAND CH. \$ 1.25 \$ 1.25 EST. DIST CHARGE 150% 150% COINCIDENCE FACTOR 150% 150% EST ANNUAL DIST DEMAND CH \$ 291.81 \$ 202.50 \$ 89 TOTAL POWER AND ENERGY REDUCTION \$ 2,653 \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 SIMPLE PAYBACK(YEARS) 1.9 1 1 NOTES 1.9 1 1 1 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. 1 1 1 THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . 1 1 1 A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 1 1 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 1 1 A A 3 WAY VALVES LIMIT S EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRES SOME OPBERVATIONS AND EXPERIMENTATIONS. 1 1 ALTERNATIVES 1 1 1 1 1 ALTERNATIVES 2 2 2 2 2 2 2 ALTERNATIVES 2 2		ESTIMATED ANNUAL D	DEMAND C	H	\$	1,027			\$	475.20		\$ 55	2		
EST. DIST CHARGE 150% 150% 150% COINCIDENCE FACTOR \$ 291.81 \$ 202.50 \$ 89 EST ANNUAL DIST DEMAND CH \$ 291.81 \$ 202.50 \$ 89 TOTAL POWER AND ENERGY REDUCTION \$ 2,653 \$ \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 \$ SIMPLE PAYBACK(YEARS) 1.9 \$ \$ NOTES 1.9 \$ \$ \$ NOTES 1.9 \$ \$ \$ \$ SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. \$ \$ \$ \$ YALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. \$ \$ \$ 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. \$ \$ 4.1TERNATIVE S \$ \$ \$ \$ \$ ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. \$ \$ \$ 1.IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. \$ \$ \$ 2. CONVERT EXISTING 3 WAY TO 2 WAY VAL		MO. DIST . DEMAND (CH.		\$	1.25			\$	1.25					
COINCIDENCE FACTOR 150% EST ANNUAL DIST DEMAND CH \$ 291.81 EST ANNUAL DIST DEMAND CH \$ 291.81 Status \$ 202.50 COST TO IMPLEMENT \$ 2,653 COST TO IMPLEMENT \$ 5,000 SIMPLE PAYBACK(YEARS) 1.9 NOTES 1.9 NOTES 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A - 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIREES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGUIL ATE REMOTE FND PRESSURE		EST. DIST CHARGE													
EST ANNUAL DIST DEMAND CH \$ 291.81 \$ 202.50 \$ 89 TOTAL POWER AND ENERGY REDUCTION \$ 2,653 COST TO IMPLEMENT \$ 5,000 \$ 2,653 SIMPLE PAYBACK(YEARS) 1.9 1.9 NOTES 1.9 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. 1.9 THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . 1.9 A - 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 1.10 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 1.10 4 LTERNATIVES 1.10 1.10 ALTERNATIVE S 2.20 1.10 ALTERNATIVE S 2.20 1.10 ALTERNATIVE S 2.20 2.20 ALTERNATIVE S 2.20 2.20 ALTERNATIVE S		COINCIDENCE FACTO	R			150%				150%					
TOTAL POWER AND ENERGY REDUCTION \$ 2,653 COST TO IMPLEMENT \$ 5,000 SIMPLE PAYBACK(YEARS) 1.9 NOTES 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY. A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGUIL ATE REMOTE FND PRESSURE		EST ANNUAL DIST DEM	MAND CH		\$	291.81			\$	202.50		\$ 8	9		
COST TO IMPLEMENT \$ 5,000 SIMPLE PAYBACK(YEARS) 1.9 NOTES 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY. A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE DASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		TOTAL POWER AND E	NERGY REE	DUCTION								\$ 2,65	3		
SIMPLE PAYBACK(YEARS) 1.9 NOTES 1.9 SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		COST TO IMPLEMENT					\$ 5,000								
NOTES SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		SIMPLE PAYBACK(YEAR	RS)				1.9								
NOTES SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE															
SYSTEM CURRENTLY IS REPORTED TO SERVE BOTH 2 WAY AND 3 WAY VALVES. THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A - 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. I. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		NOTES													
THESE VALVES RESPOND DIFFERENTLY TO CONTROL STRATEGY . A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIRERS SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		SYSTEM CURRENTLY IS	REPORTE	D TO SER\	/E BOT	H 2 WAY A	AND 3 WAY VAL	VES.							
A- 3 WAY VALVES BYPASS FLOW I.E CAUSE UNNECESSARY FLOW AND REQUIRED POWER AT LOW LOAD PERIODS. 2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. I. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES (LOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		THESE VALVES RESPON	ND DIFFER	ENTLY TO	CONT	ROL STRA	TEGY .								
2 WAY VALVES LIMIT FLOW WHICH RAISES RESISTANCE AND ELEVATES PRESSURE AND POWER REQUIREMENTS IN LOW LOAD PERIODS. FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		A- 3 WAY VALVES BYPA	SS FLOW I	.E CAUSE	UNNEC	CESSARY F	LOW AND REQ	UIRED PO	NER .	AT LOW L	OAD PERIC	DDS.			
FINDING A COMPROMISE THAT IS EFFECTIVE OVER THE FULL RANGE OF OPERATING I REQUIERES SOME OPBERVATIONS AND EXPERIMENTATIONS. ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. I. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. C. CONVERT EXISTING 3 WAY TO 2 WAY VALVES LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE FND PRESSURE		2 WAY VALVES LIMIT FL	OW WHIC	H RAISES	RESIST	ANCE AND	D ELEVATES PRE	ESSURE AN	D PO	WER REQ	JIREMENT	S IN LOW LO)ad Perioi	DS.	
ALTERNATIVES ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE END PRESSURE		FINDING A COMPRON	ISE THAT	IS EFFECT	IVE OV	ER THE FL	JLL RANGE OF	OPERATIN	G I RE	QUIERES	SOME OPE	BERVATIONS	AND EXPE	RIMENTA	FIONS.
ALTERNATIVE SELECTION REQUIRES ASSESSMENT OF TYPES AND NUMBERS OF CONTROL VALVES OF EACH TYPE. 1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE END PRESSURE		ALTERNATIVES												+++	
1. IMPLEMENT AND TUNE A COMPROMISE REMOTE PRESSURE BASED CONTROL UNOCCUPIED RESET AND OCC AND UNOCC WWSD. 2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGUL ATE REMOTE END PRESSURE		ALTERNATIVE SELECTION	ON REQUI	RES ASSES	SMEN	T OF TYPE	S AND NUMBE	RS OF CON	ITRO	VALVES	OF EACH T	YPE.			
2. CONVERT EXISTING 3 WAY TO 2 WAY VALVES 3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE END PRESSURE		1. IMPLEMENT AND TU	JNE A CON	IPROMISE	REM	OTE PRES	SURE BASED C	ONTROL	UNO	CCUPIED F	RESET AND	OCC AND	UNOCC W	NSD.	
3. LOCK 3 WAY VALVE BYPASSES CLOSED TO CREATE 2 WAY VALVES AND REGULATE REMOTE END PRESSURE		2. CONVERT EXISTING	3 WAY TO	2 WAY VA	LVES										
CONTRACT STREET STREE		3. LOCK 3 WAY VALVE	BYPASSES	CLOSED T	O CRE	ATE 2 WAY	VALVES AND F	REGULATE	REMO	DTE END F	RESSURE.			++-+	

Annex 7. Auditorium Air Handler, Data, Assumptions and Analysis.

SCHOOL EINERGT ASSESSIVIEINT R DREVLOW									
DRUMUND K-12 13-May 2019									
THE UNIT IS REPORTED AS CURRENTLY OPERATING IN A AN UNOCCUPIED TEMP MAINTENANCE MODE.									
THE LARGE FAN OPERATING INTERMITTENTLY CREATES LARGE LOAD SURGES TO THE BOILER AND PUMPING SYSTEM	IS.								
THESE CREATE EXCESSIVE BOILER PUMP LOADS AND BOILER LOAD SWINGS WHICH COMPROMISE OPTIMUM OPERA	ION.								
STEADY STATE LOW FLOW /SPEED/POWER WOULD REDUCE POWER AND ENERGY BILLS AND IMPROVE ENERGY									
PERFORMANCE OF BOILER AND CIRC PUMP SYSTEMS .									
A VED AND APPROPRIATE CONTROL WILL BE REQUIRED TO ACCOMPLISH THE REDUCTION POTENTIAL.									
THE CURRENT FAN CAPACITY IS LIKELY BASED ON SYSTEM COOLING REQUIREMENT AND LIKELY TWICE THE PEAK									
REQUIREMENT. HEATING REQUIREMENT AND LIKELY 3-4 TIMES AVERAGE HEATING LOAD									
THIS SUGGESTS A SIGNIFICANT POWER AND ENERGY REDUCTION POTENTIAL FOR ALL HEATING CONDITIONS									
GIVEN THE COOLING LOAD COINCIDENCE A SIGNIFICANT COOLING LOAD REDUCTION IS ALSO ANTICIPATED.									
COOLING LOAD FAN REDUCTIONS WOULD NEED TO BE COMPATIBLE TO COOLING SOURCE APPLICATIONS.									
CURRENT PROPOSED									
FAN RATING (CFM) 15000 15000									
MOTOR H.P 20									
EFF 0.9									
POWER FACTOR 0.87									
LOAD AT RATED CONDITION 14.4 KW									
CURRENT MOTOR 40									
AMPS									
OPERATING MOTOR P.F. 0.87									
EFFECTIVE MOTOR POWER 12.5 KW 5 KW 7.5									
CURRENT OP CONDITION 87% 35%									
ANNUAL OPERATING HRS 3000 4000									
ESTIMATED ANNUAL 37611 KWH 20000 17611									
ENERGY USE									
ON PEAK ENERGY 0.075									
OFF PEAK ENERGY 0.045									
% ON PEAK 75%									
EFFECTIVE ENERGY RATE \$ 0.068 \$ 0.068									
EST ANNUAL ENERGY EXPEN \$ 2,539 \$ 1,350 \$ 1,189									
MO DEMAND RATE 11 11									
MO COINCIDENCE FACTOR 0.5 0.9									
ESTIMATED ANNUAL \$ 827 594 \$ 233									
MO DEMAND CHARGES									
DIST DEMAND RATE \$ 1.25 1.25									
ANNUAL DIST. DEMAND									
COINCIDENCE FACTOR 0.6 0.9									
EST. ANN. DIST DEMAND \$ 113 \$ 68 \$ 45									
EXPENSE									
TOTAL EST ANN.POWE AND ENERGY									
EXPENSE \$ 3,479 \$ 2,012 \$ 1,467									
ESTIMATED VFD AND CONTROL \$ 7,000									
IMPLEMENTATION EXPENSE									
ESTIMATED SIMPLE PAYBACK 4.8 YEARS									

Annex 8. Four Small Air Handler VFDS Control, Data, Assumptions and Analysis.

SCHOOL	ENERGY A	SSESSMEN	IT		R DREVLOW					
	FACILITY		DRUMMO	ND K12		13-May				
ENERGY	REDUCTIO	N OPPORT	UNITY							
	THE FACII	LITY HAS 4	SMALL PN	EUMATICA	LLY CONTROI	LED AIR H	ANDLERS			
	THE PNE	UMATIC CO	ONTROL P	ROVIDES A	CONSTANT V	OLUME AI	R SUPPLY	FOR THE RO	OMS/ZON	ES
	BASED O	N THE MAX	XIMUM CO	OLING LO	AD LIKELY TO	BE 6 ACH	OR MORE			
	CONTINC	US OPERA	TION IS RE		OR ALL OPERA	ATING HOU	IRS TO PR	OVIDE VENT	ILATION.	
	TYPICAL H	IEATING L	OADS CAN	NORMAL	LY BE ACCON	IPLISHED V	VITH 2 TO	3 ACH .		
	THE SIGN	IFICANT F	AN SPEED	/AIR FLOW	REDUCTION	WILL ALLC	W SIGNIF	ICANT FAN	POWER RE	DUCTIONS
	FOR ALL H	HEATING A	ND MOST	COOLING	LOAD PERIOD	DS.				
	VFDS AND	DIGITAL	CONTROL	WILL BE RE	EQUIRED TO A	CCOMPLIS	SH THE DE	SIRED POW	ER AND EN	IERGY REDUCTIONS.
	CURRENT	LY THE FA	CILITY DOE	S NOT HA	VE MATASYS (CONTROL	CAPABILIT	Y FOR THE A	AIR HANDLI	ERS REFERENCED.
	REDUCTIO	ON OF THE	E TOTAL FA	N FLOW A	LSO REQUIRE	D ADJUSTI	MENT OF	THE OUTSID	E AIR FLOV	V DAMPER SYSTEM
		TO MAIN	TAIN ADEC	UATE OUT	SIDE AIR WITH	A VARIAB	LE SUPPL	Y FLOW. THIS	S IS POSSIB	LE WITH DDC
		CONTRO	BUT DIFF	ICULT IF PR	OBLEMATIC T	O ACCOM	PLISH WI	TH PNEUMAT	TIC CONTR	OL.
		EXISTING				PROPOSE	D			
AIR HAN	DLERS	4				4				
MOTOR I	H.P	7.5				7.5				
MNOR EF	=F	0.85				0.85				
POWER F	ACTOR	8				0.8				
RATED PO	OWER	6.58235								
		EXISTING								
EFFECTIV	/E /EQUIVA	LENT								
OPERATII	NG LOAD	90%				0.6				
						0.3				
EST OPER	RATING LO	5.92	KW							
EST OPER	RATING LO	AD OUTPL	5.0) KW		1.97	KW		3.1	KW
EST ANN	UAL OPERA	ATING	350	<mark>)</mark>						
HOURS										
EST ANN	UAL ENERG	GY INPUT	8293	3		27646			55292	
EST EFFE	CTIVE ENE	RGY COST	0.06	5						
			\$ 5,391			\$ 1,797			\$ 3,594	
MO DEN	MAND RATE		\$ 11.00			\$ 11.00				
MO COIN	ICIDENCE		0.7	5		0.85				
ESTIMAT	ED ANN. D	EMAND	\$ 586.49			\$221.56			\$ 365	
DIST DEN	IAND		1.2	5		1.25				
EST ANN	DIST. DEM	AND	\$ 320			\$ 178			\$ 142	
EST COIN	NC		0.	7		1.5				
TOTAL PO	OWER AND								\$ 4,101	
ENERGY	REDUCTIO	N								
COST TO	IMPLEMEN	NT VFS AN	D CONTRO	DLS ONTO	A FUNCTION	ING DDC S	YSTEM F	OR THE AIR	HANDLERS	
					\$ 12,000.00					
	SIMPLE PA	AYBACK			2.9	YEARS				

Annex 9. Repairing Trane UniVents, Data, Assumptions and Analysis.

SCHOOL EN	NERGY ASSESSMEN	NT		R DREVLOW			
E	ACILITY	DRUMMON	D K12		13-May		
ENERGY RE	DUCTION OPPORT	TUNITY					
MULTIPLE C	LASSROOMS ARE	SERVED BY	TRANE UN	IVENTS .			
THE UNIVER	NTS ARE DESCRIBE	D AS HAVIN	ig variabi	LE SPEED FAN	NMOTORS.		
IT IS ALSO F	REPORTED THAT A	NUMBER O	F THE UNI	TS NO LONGE	ER OPERATE	AS	
VARIABLE S	PEED UNITS AND	ARE EITHER	FULL SPE	ED ON OR OF	F. OPERATIN	IG	
AT FULL SPI	EED AND CYCLIN	G IS LESS EF	FICIENT TH	HAN OPERATI	NG IN A		
MODULATI	NG FASHION.						
FULL SPEE	D OPERATION WIL	L ONLY BE R	EQUIRED I	N WARMUP	MODE AND		
MAX COOL	ING PERIODS.						
N	IOTORS						
Т	YPE		SPEED				
N	JUMBER	12					
	IP	0.5					
F	FF	0.8					
F		0.46625	КW				
P		0.40020					
		0.6					
F		0.0					
F		3 357	K/M				
		5.557					
		NG	2500				
		NG	2500				
		GY	0202				
		Gr	0373	VVH			
			\$ 0.000	¢ 554			
		¢ 11.00	۵ ۵ ۵ ۵ ۵				
		\$ 11.00 07					
		¢210.10					
E	ST ANNUAL DEMA	\$310.19					
	DIST DEMAND RATI	E	\$ 1.25				
C			0.8	* 10			
E	ST ANNUAL DIST			\$ 40	<u>+ 004</u>		
E	ST TOTAL POWER	SY EXPENS		\$ 904			
t	STIMATED POWER		JY REDUCTION POTENTIAL				
E	FFECTIVE MODUL	OPERATIO	N	50%			
					\$ 452.19		
E	ST EXPENSE TO RE				\$ 500.00	PER UNIT	
E	ST TOTAL REPAIE	COST			\$ 6,000.00		
S	IMPLE PAYBACK				13.3		YEARS